• Title/Summary/Keyword: 추론 검증

Search Result 462, Processing Time 0.023 seconds

An Approach of Scalable SHIF Ontology Reasoning using Spark Framework (Spark 프레임워크를 적용한 대용량 SHIF 온톨로지 추론 기법)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1195-1206
    • /
    • 2015
  • For the management of a knowledge system, systems that automatically infer and manage scalable knowledge are required. Most of these systems use ontologies in order to exchange knowledge between machines and infer new knowledge. Therefore, approaches are needed that infer new knowledge for scalable ontology. In this paper, we propose an approach to perform rule based reasoning for scalable SHIF ontologies in a spark framework which works similarly to MapReduce in distributed memories on a cluster. For performing efficient reasoning in distributed memories, we focus on three areas. First, we define a data structure for splitting scalable ontology triples into small sets according to each reasoning rule and loading these triple sets in distributed memories. Second, a rule execution order and iteration conditions based on dependencies and correlations among the SHIF rules are defined. Finally, we explain the operations that are adapted to execute the rules, and these operations are based on reasoning algorithms. In order to evaluate the suggested methods in this paper, we perform an experiment with WebPie, which is a representative ontology reasoner based on a cluster using the LUBM set, which is formal data used to evaluate ontology inference and search speed. Consequently, the proposed approach shows that the throughput is improved by 28,400% (157k/sec) from WebPie(553/sec) with LUBM.

Spark based Scalable RDFS Ontology Reasoning over Big Triples with Confidence Values (신뢰값 기반 대용량 트리플 처리를 위한 스파크 환경에서의 RDFS 온톨로지 추론)

  • Park, Hyun-Kyu;Lee, Wan-Gon;Jagvaral, Batselem;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.87-95
    • /
    • 2016
  • Recently, due to the development of the Internet and electronic devices, there has been an enormous increase in the amount of available knowledge and information. As this growth has proceeded, studies on large-scale ontological reasoning have been actively carried out. In general, a machine learning program or knowledge engineer measures and provides a degree of confidence for each triple in a large ontology. Yet, the collected ontology data contains specific uncertainty and reasoning such data can cause vagueness in reasoning results. In order to solve the uncertainty issue, we propose an RDFS reasoning approach that utilizes confidence values indicating degrees of uncertainty in the collected data. Unlike conventional reasoning approaches that have not taken into account data uncertainty, by using the in-memory based cluster computing framework Spark, our approach computes confidence values in the data inferred through RDFS-based reasoning by applying methods for uncertainty estimating. As a result, the computed confidence values represent the uncertainty in the inferred data. To evaluate our approach, ontology reasoning was carried out over the LUBM standard benchmark data set with addition arbitrary confidence values to ontology triples. Experimental results indicated that the proposed system is capable of running over the largest data set LUBM3000 in 1179 seconds inferring 350K triples.

An Efficient RDF Query Validation for Access Authorization in Subsumption Inference (포함관계 추론에서 접근 권한에 대한 효율적 RDF 질의 유효성 검증)

  • Kim, Jae-Hoon;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.422-433
    • /
    • 2009
  • As an effort to secure Semantic Web, in this paper, we introduce an RDF access authorization model based on an ontology hierarchy and an RDF triple pattern. In addition, we apply the authorization model to RDF query validation for approved access authorizations. A subscribed SPARQL or RQL query, which has RDF triple patterns, can be denied or granted according to the corresponding access authorizations which have an RDF triple pattern. In order to efficiently perform the query validation process, we first analyze some primary authorization conflict conditions under RDF subsumption inference, and then we introduce an efficient query validation algorithm using the conflict conditions and Dewey graph labeling technique. Through experiments, we also show that the proposed validation algorithm provides a reasonable validation time and when data and authorizations increase it has scalability.

Bayesian Inferrence and Context-Tree Matching Method for Intelligent Services in a Mobile Environment (모바일 환경에서의 지능형 서비스를 위한 베이지안 추론과 컨텍스트 트리 매칭방법)

  • Kim, Hee-Taek;Min, Jun-Ki;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.144-152
    • /
    • 2009
  • To provide intelligent service in mobile environment, it needs to estimate user's intention or requirement, through analyzing context information of end-users such as preference or behavior patterns. In this paper, we infer context information from uncertain log stored in mobile device. And we propose the inference method of end-user's behavior to match context information with service, and the proposed method is based on context-tree. We adopt bayesian probabilistic method to infer uncertain context information effectively, and the context-tree is constructed to utilize non-numerical context which is hard to handled with mathematical method. And we verify utility of proposed method by appling the method to intelligent phone book service.

A Individualized Reasoning Strategy using Learner's Cognitive Union (학습자 인지 구조체를 이용한 추론의 개별화 전략)

  • Kim, Yong-Beom;Kim, Yungsik
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.5
    • /
    • pp.31-39
    • /
    • 2006
  • The change into the knowledge based information society requires a transformation of educational paradigm. Accordingly, intelligent learning and distance education are attracting a fair amount of attention. To apply the instructional learning method in this field, we need to consider a individualization of learning, as it were, abstraction of fact and path through learning, which is based on learner's traits, this focus entails a argument for individualized reasoning strategy. Therefore, in this paper, we design a learner's cognitive union, which is based on X-Neuronet(eXtended Neuronet), represent learner's hierarchical knowledge is able to self-learn, and grows adaptive union by proprietor. Additionally, we propose a individualized reasoning strategy, which relies upon learner's cognitive union, and verify the validity.

  • PDF

Fuzzy OWL을 이용한 사용자 Context의 표현 및 추론

  • Son, Jong-Su;Jeong, In-Jeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.451-456
    • /
    • 2007
  • 유비쿼터스 컴퓨팅 환경을 구축하기 위해서는 사용자 및 주변 상황에 관한 인지기술이 필수적이다. 이에 따라 이기종 분산형 시스템에서 언어와 기종에 영향을 받지 않고 사용자 Context를 인지하고 표현하는 문제는 해결해야할 중요한 과제로 대두되었다. 이에 따라, 본 논문에서는 이 과제를 해결하기 위하여 시맨틱 웹 기술 및 퍼지 개념을 이용하여 사용자 Context를 기술하는 것을 제안한다. 온톨로지는 컴퓨터가 정보자원의 의미를 파악하고 자동적으로 처리할 수 있도록 고안된 지식표현 언어이므로 이기종 시스템 하에서의 사용자 Context를 표현하는데 적합하다. 한편, 사용자가 접할 실세계의 환경은 일반집합(Crisp Set)으로 표현하기 힘들기 때문에 본 논문에서는 퍼지개념과 표준 웹 온톨로지 언어 OWL이 융합된 Fuzzy OWL언어를 사용했다. 본 논문에서 제안하는 방법은 Context를 Fuzzy OWL로 표현하기 위하여 먼저 사용자가 접한 환경정보들을 수치로 표현한다. 그리고 이를 OWL로 기술하며 OWL로 표현된 사용자 Context를 Fuzzy OWL로 변환한다. 마지막으로 퍼지 개념이 포함된 사용자 Context를 이용하여 자동적인 상황인지가 가능한지 여부를 퍼지 추론 엔진인 FiRE를 사용하여 실험한다. 본 논문에서 제시한 방법을 사용하면 이기종 분산시스템에서도 사용할 수 있는 형태로 Context를 기술할 수 있다. 그리고 기술된 Context를 기반으로 현재 사용자가 접한 환경의 상태를 추론할 수 있다. 또한 퍼지 기술 로직 언어(Fuzzy Description Logic)기반 추론기인 FiRE를 이용하여 이를 검증한다.

  • PDF

Rule Models for the Integrated Design of Knowledge Acquisition, Reasoning, and Knowledge Refinement (지식획득, 추론, 지식정제의 통합적 설계를 위한 규칙모델의 구축)

  • Lee, Gye-Sung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1781-1791
    • /
    • 1996
  • A number of research issues such as knowledge acquisition, inferencing techniques, and knowledge refinement methodologies have been involved in the development of expert systems. Since each issue is considered very com- plicated, there has been little effort to take all the issues into account collectively at once. However, knowledge acquisition and inferencing are closely reated because the knowledge is extracted by human experts from the inferencing process for solving a specific task or problem. Knowledge refinement is also accomplished by hand-ling problems caused during the inferencing process of the system due to incompleteness and inconsistency of the knowledge base. From this perspecitive, we present a method by which software platform is established in which those issues are integrated in the development of expert systems, especially in the domain where the domain models and concepts are hard to be constructed because of inherent fuzziness of the domain. We apply a machine learning technique,technique, conceptual clustering,to build a knowledge base and rual models by which an efficient inferencing,incermental knp\owledge acquisition and refinment are possible.

  • PDF

The effect of perceived within-category variability through its examples on category-based inductive generalization (범주예시에 의해 지각된 범주내 변산성이 범주기반 귀납적 일반화에 미치는 효과)

  • Lee, Guk-Hee;Kim, ShinWoo;Li, Hyung-Chul O.
    • Korean Journal of Cognitive Science
    • /
    • v.25 no.3
    • /
    • pp.233-257
    • /
    • 2014
  • Category-based induction is one of major inferential reasoning methods used by humans. This research tested the effect of perceived within-category variability on the inductive generalization. Experiment 1 manipulated variability by directly presenting category exemplars. After displaying low variable (low variability condition) or highly variable exemplars (high variability condition) depending on condition, participants performed inductive generalization task about a category in question. The results showed that participants have greater confidence in generalization when category variability was low than when it was high. Rather than directly presenting category exemplars in Experiment 2, participants performed induction task after they formed category variability impression by categorization task of identifying category exemplars. Experiment 2 also found the tendency that participants have greater inductive confidence when category variability was low. The variability effect discovered in this research is distinct from the diversity effect in previous research and the category-based induction model proposed by Osherson et al. (1990) cannot fully account for the variability effect in this research. Test of variability effect in category-based induction is discussed in the general discussion section.

Cross-Validated Ensemble Methods in Natural Language Inference (자연어 추론에서의 교차 검증 앙상블 기법)

  • Yang, Kisu;Whang, Taesun;Oh, Dongsuk;Park, Chanjun;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.8-11
    • /
    • 2019
  • 앙상블 기법은 여러 모델을 종합하여 최종 판단을 산출하는 기계 학습 기법으로서 딥러닝 모델의 성능 향상을 보장한다. 하지만 대부분의 기법은 앙상블만을 위한 추가적인 모델 또는 별도의 연산을 요구한다. 이에 우리는 앙상블 기법을 교차 검증 방법과 결합하여 앙상블 연산을 위한 비용을 줄이며 일반화 성능을 높이는 교차 검증 앙상블 기법을 제안한다. 본 기법의 효과를 입증하기 위해 MRPC, RTE 데이터셋과 BiLSTM, CNN, BERT 모델을 이용하여 기존 앙상블 기법보다 향상된 성능을 보인다. 추가로 교차 검증에서 비롯한 일반화 원리와 교차 검증 변수에 따른 성능 변화에 대하여 논의한다.

  • PDF

Modeling feature inference in causal categories (인과적 범주의 속성추론 모델링)

  • Kim, ShinWoo;Li, Hyung-Chul O.
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.329-347
    • /
    • 2017
  • Early research into category-based feature inference reported various phenomena in human thinking including typicality, diversity, similarity effects, etc. Later research discovered that participants' prior knowledge has an extensive influence on these sorts of reasoning. The current research tested the effects of causal knowledge on feature inference and conducted modeling on the results. Participants performed feature inference for categories consisted of four features where the features were connected either in common cause or common effect structure. The results showed typicality effects along with violations of causal Markov condition in common cause structure and causal discounting in common effect structure. To model the results, it was assumed that participants perform feature inference based on the difference between the probabilities of an exemplar with the target feature and an exemplar without the target feature (that is, $p(E_{F(X)}{\mid}Cat)-p(E_{F({\sim}X)}{\mid}Cat)$). Exemplar probabilities were computed based on causal model theory (Rehder, 2003) and applied to inference for target features. The results showed that the model predicts not only typicality effects but also violations of causal Markov condition and causal discounting observed in participants' data.