• Title/Summary/Keyword: 추력 제어

Search Result 522, Processing Time 0.036 seconds

Study of Thrust Control Performance Improvement for Hybrid Rocket Applications (하이브리드 로켓의 추력제어 성능 향상에 관한 연구)

  • Choi, Jae-Sung;Kang, Wan-Kyu;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • In this study, we tried to improve the thrust control performance through the thrust control combustion experiment of the hybrid rocket. We constructed the system which controls the oxidizer flow by combining a needle valve with a stepping motor and controlling the stepping motor drive according to the thrust control command order. Gas oxygen was used as the oxidizer for two different propellants, PE(Polyethylene), PC(Polycarbonate), respectively. To improve the slow response time and the oscillation phenomenon in the beginning stage of the thrust control combustion experiment, we measured and analyzed the change of the flow speed of the propellant pipe. The revised thrust control combustion experiment showed that the thrust was stably controlled with the margin or error from the thrust command within ${\pm}1$ N.

로켓 엔진 추력제어시스템 개요

  • 이한주;조기주;정영석;조상연;오승협
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.92-92
    • /
    • 2003
  • 대형 위성 발사체를 우주로 발사하기 위해서는 복잡한 추진기관시스템을 정밀하게 제어해야 하며, 이를 위해서는 로켓의 궤적에 따른 추진제 질량과 추력을 적절하게 제어해야 한다. 정확하게 계산된 비행궤도를 따라 로켓을 최종 목표 지점까지 올리는 일은 엔진의 추력과 공연비를 동시에 조절하는 엔진제어기술을 이용하여 가능하게 된다. 추력제어는 엔진시스템에 대한 정확한 이해와 이를 바탕으로 한 추진제 유량 제어를 통해 가능하기 때문에 액체로켓 엔진에 대한 엔진시스템 분석과 해석이 선행되어야 한다. 본 연구에서는 향후 연구 대상이 될 엔진시스템의 구성과 추력 및 공연비 제어시스템의 기본 제어 방법을 소개하고자 한다.

  • PDF

Control of pressure and thrust for a variable thrust solid propulsion system using linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.167-174
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable to long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For this we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using feedback linearization technique. Derived thrust equation and designe a thrust control model. We design the proportion-integral controller for linearizing about operating point. We also demonstrate the performance of controller model through numerical simulations.

  • PDF

Suppression of Thrust Oscillation for Hybrid Rocket Thrust Control Applications (하이브리드 로켓의 추력제어를 위한 추력 섭동 감쇠에 관한 연구)

  • Kang, Wan-Kyu;Choi, Jae-Sung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.197-201
    • /
    • 2010
  • Precise control of oxidizer mass flow rate is important for hybrid rocket thrust control. In this study, oxidizer mass flow rate control system is developed by using stepping motor which is controlled by Labview program. Gox is used for oxidizer and PolyCarbonate, PolyEthylene, and PMMA is used for solid propellant. To suppress thrust oscillation during thrust control experiment, schematics of the experiment is analysised and revised. Results show that thrust oscillation is suppressed successfully.

  • PDF

A Study on Control Algorithm of Thrust Control Valve for a Liquid Rocket Engine (액체로켓엔진용 추력제어밸브의 제어 알고리즘 연구)

  • Jung, Taekyu;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1055-1062
    • /
    • 2012
  • In this paper, the mathematical models and control algorithm of a thrust control valve were described as a precedent study on the design of thrust control algorithm for a liquid rocket engine (LRE). Numerical simulations were performed using a simplified simulation system of an LRE and the developed mathematical models were validated by comparison with the experimental results. Through these research, basic data were acquired for the development of a thrust control algorithm for a LRE.

Thrust Vectoring Control of Supersonic Jet Using Proportional Control Valves (비례제어밸브를 이용한 초음속 제트의 추력편향 제어)

  • Lee, MyungYeon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • An experimental study is performed to observe the characteristics of the thrust vectoring control (TVC) of the supersonic jet using proportional control valves. It is observed that three different TVC characteristics exist as the nozzle pressure ratio varies. Strong hysteresis phenomena are also observed during the valve control for a certain range of the nozzle pressure ratio. It is also noticed that the secondary chamber pressure is one of the influencing parameters for the TVC. Therefore, a control algorithm utilizing the secondary chamber pressure coefficient as a predictor is applied to achieve the stable TVC avoiding the hysteresis. Consequently, the stable TVC with the maximum deflection angle of about 20-degree has been realized using the proportional control valves.

Gain Scheduling Controller Design and Performance Evaluation for Thrust Control of Variable Thrust Solid Rocket Motor (가변 추력 고체추진기관의 추력 제어를 위한 이득 계획 제어기 설계 및 성능 분석)

  • Hong, SeokHyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 2016
  • Theoretical model of a variable thrust solid rocket motor with a pintle nozzle was derived. For the chamber pressure control, classical model linearization and proportional-intergral controller was used. And then two types of gain scheduling controller were suggested to imporve controller performance for the non-linear propulsion model. Considering characteristics of systems, control gains were scheduled by chamber pressure or free volume. Step responses of each controllers were compared. As a result, the proper control algorithm about characteristics of variable thrust rocket motor was suggested.

Study of the Thrust Vector Control Using a Secondary Flow Injection (2차 유동의 분사에 의한 제트 유동의 추력제어에 관한 연구)

  • 정성재;김희동;안재문;정동호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.14-15
    • /
    • 2002
  • 기체역학 이론에 의하면, 노즐의 공급압력과 노즐의 상세형상이 주어지는 경우에 추진 노즐로부터 방출되는 제트유동의 추력을 예측할 수 있으며, 최대추력은 노즐 출구에서 유동이 적정팽창 상태로 될 때 얻어진다. 실제의 추진 로켓에서나 다른 비상체에서는 추력의 예측뿐만 아니라, 얻어지는 추력의 방향을 적절하게 조절하여 제어하는 것이 요구된다. 종래 추력벡터 제어를 위해서 많은 연구들이 수행되었다. 일례로 추진노즐 내부에 베인(vane) 등을 삽입하여, 추력벡터를 조절하거나, 추진 노즐을 가변(movable nozzle)으로 하는 방법, 그리고 노즐내부에 2차 유동을 분사(secondary flow injection)하여 평균 추력벡터를 제어하는 방법 등이 제안되어 응용되어 왔다.

  • PDF

추력기를 이용한 우주비행체 자세제어설계

  • Sun, Byung-Chan;Park, Yong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.186-195
    • /
    • 2005
  • This paper deals with attitude control design for a thruster system which is mainly used as a control system of space vehicles. Attitude controllers are designed based on a simple blowing-down thruster system structure. In order to consider severe time-delay effects of the thruster system during controller design, the control design problem is defined based on the corresponding limit cycle analysis. Optimal roll controllers and optimal pitch/yaw controllers are resulted from co-evolutionary optimum design processes for each flight phase. The control performances are verified by computer simulations.

  • PDF

Second Stage Attitude Control Results of KSLV-I Third Flight Test (나로호 3차 비행시험 2단 자세제어 결과)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.189-199
    • /
    • 2013
  • This paper summarizes results of second stage attitude control of KSLV-I third flight test. The results show that three axes attitude control at coasting phases of KSLV-I was successfully accomplished by the reaction control system, and pitch and yaw attitude control at thrusting phase where second stage kick motor burns was also normally accomplished by using the thrust vector control system. It is verified that the second stage controller performed successfully for all flight phases regardless of some disturbances due to mass center offset, slag effects, and residual thrust of kick motor. These results may provide an important basis in enhancing domestic technology level of attitude control of launch vehicle.