• Title/Summary/Keyword: 추력 계수

Search Result 119, Processing Time 0.024 seconds

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (2) - Flight Control and Guidance of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (2) - 태양광 무인기 비행제어 및 유도항법 -)

  • Kim, Taerim;Kim, Doyoung;Jeong, Jaebaek;Moon, Seokmin;Kim, Yongrae;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.479-487
    • /
    • 2022
  • This paper presents the control and guidance algorithm of a KAU-SPUAV(Korea Aerospace University - Solar Powered Unmanned Aerial Vehicle) which is designed and developed in Korea Aerospace University. Aerodynamic coefficients are calculated using the vortex-lattice method and applied to the aircraft's six degrees of freedom equation. In addition, the thrust and torque coefficients of the propeller are calculated using the blade element theory. An altitude controller using thrust was used for longitudinal control of KAU-SPUAV to glide efficiently when it comes across the upwind. Also describes wind estimation technic for considering wind effect during flight. Finally, introduce some guidance laws for endurance, mission and coping with strong headwinds and autonomous landing.

Design of Full-Scale Combustion Chamber of Liquid Rocket Engine for Ground Hot Firing Tests (지상연소시험용 실물형 고압 연소기의 설계)

  • Han Yeoungmin;Kim Seunghan;Seo Seonghyeon;Cho Wonkook;Choi Hwanseok;Seol Wooseok;Lee Sooyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.299-304
    • /
    • 2005
  • The design procedures of full-scale combustion chamber with chamber pressure of 53bara, mass flow rate of 90kg/s, combustion efficiency of $94\%$ and specific impulse at ground of 253sec were described. The details of combustion performance and geometrical parameters were also given. Full-scale combustion chamber consists of the combustor head with injector/baffle and the chamber/nozzle with regenerative cooling channels. The design results of combustion chamber with ablative materials, detachable injector head with SUS baffle or baffle injector and chamber body for ground hot firing tests were given in this paper.

  • PDF

Wind Tunnel Test for the Propeller Performance of the High Altitude UAV (고고도 무인기용 프로펠러 성능특성 풍동시험)

  • Cho, Teahwan;Kim, Yangwon;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.189-196
    • /
    • 2018
  • Propeller performance measurement system for high altitude UAV was designed and applied to the wind tunnel test for 2 propeller models with a diameter around 1 m. Mechanical power of the propeller was directly measured by using the torque sensor installed on the rotating axis. The thrust of whole operation body including the propeller was measured by thrust road cell. The guide rail system was suggested to reduce the weight influence of operation body on the thrust road cell. The influence of each measured variables on the aerodynamic coefficients was studied with the repeatability and uncertainty analysis. This analysis result shows that the accuracies of the road cell and the wind velocity were major factors for the thrust coefficient. Propeller performance with typical RPM was measured with various wind speeds and the test results was summarized by performance coefficients for 5 different RPM.

Design Optimization of Moving-Coil Type Linear Actuator Using Level Set Method and Phase-Field Model (레벨셋법과 페이즈 필드 모델을 이용한 가동코일형 리니어 액추에이터 최적설계)

  • Lim, Sung-Hoon;Oh, Se-Ahn;Min, Seung-Jae;Hong, Jung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1223-1228
    • /
    • 2011
  • A moving-coil type linear actuator has been widely used in the system reciprocating short stroke because of its several advantages, such as the structural simplicity, low weight and a fast control response speed. This paper presents a design approach for improving the actuating performance with a clear expression of optimal configuration represented by a level set function. The optimization problem is formulated to minimize the variation of magnetic force at every moving displacement of the mover for fast and easy control. To consider the manufacturability of actuator, the concept of phase-field model is incorporated to control the complexity of structural boundaries. To verify the usefulness of the proposed method, the core design example of cylindrical linear actuator is performed.

Structural analysis of Kick Motor support cone structure (KSLV-1 킥모터지지부 콘 구조물 구조 해석)

  • An, Jae-Mo;Kim, Gwang-Su;Jang, Yeong-Sun;Lee, Yeong-Mu
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.159-165
    • /
    • 2006
  • In this study, structural analysis is executed about cone structure of KSL V-1 2nd stage KMS(kick motor support structure) which is designed for support the load developed from 2nd stage kick motor. KMS is consisted of cone structure and truss structure which is designed for supporting load developed from 2nd stage payload. Applied loads to cone structure are tension load by inertia developed from kick motor and compression load developed from kick motor. Also, shear and bending load are developed according to flight condition. In this study, structural analysis of cone structure is executed under several load condition which may be applied to cone structure. Also, structural analysis with two finite element model is performed according to pressure vent scheme. In result of structural analysis, critical load condition is equivalent tension load with cut-out.

  • PDF

Preliminary Design of Human Powered Aircraft by the Consideration of Aerodynamic Performance (공기역학적 성능을 고려한 인간동력항공기 개념 설계)

  • Kang, Hyungmin;Kim, Cheolwan
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, preliminary design of human powered aircraft was performed by considering the aerodynamic performance. For this, overall weight including the aircraft and pilot was determined. Then, the main wing and horizontal/vertical tail were designed with appropriate selection of the airfoils and planform shapes. Based on these, three dimensional flow was calculated to obtain lift and drag coefficients and the position of center of gravity (CG). Consequently, it was shown that the lift and power of the aircraft satisfied the constraints of the minimum required lift and the pilot's available power. Also, the CG of the aircraft was located at aerodynamic center (AC) of the main wing, which guaranteed 26% of the static margin.

Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid (75톤급 액체로켓엔진용 터보펌프 조립체의 상사매질 성능시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Performance test of a full-scale turbopump assembly for a 75 ton class liquid rocket engine was carried out at full speed. Model fluid was used as a working medium: liquid nitrogen for the oxidizer pump, water for the fuel pump, and hot air for the turbine. The turbopump was operated stably, satisfying the performance requirements. Head coefficient and flow coefficient of the pumps remained constant at the speed-increasing period. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test showed a good agreement with those from the turbopump component tests.

Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid (75톤급 액체로켓엔진용 터보펌프 조립체의 상사매질 성능시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.27-32
    • /
    • 2010
  • Performance test of a full-scale turbopump assembly for a 75 ton class liquid rocket engine was carried out at full speed. Model fluid was used as a working medium: liquid nitrogen for the oxidizer pump, water for the fuel pump, and hot air for the turbine. The turbopump was operated stably, satisfying the performance requirements. Head coefficient and flow coefficient of the pumps remained constant at the speed-increasing period. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test showed a good agreement with those from the turbopump component tests.

  • PDF

A Study on the Self-Propulsion CFD Analysis for a Catamaran with Asymmetrical Inside and Outside Hull Form (안팎 형상이 비대칭인 쌍동선의 자항성능 CFD 해석에 관한 연구)

  • Jonghyeon Lee;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.108-117
    • /
    • 2024
  • In this study, simulations based on computational fluid dynamics were performed for self-propulsion performance prediction of a catamaran that has asymmetrical inside and outside hull form and numerous knuckle lines. In the simulations, the Moving Reference Frame (MRF) or Sliding Mesh (SDM) techniques were used, and the rotation angle of the propeller per time step was different to identify the difference using the analysis technique and condition. The propeller rotation angle used in the MRF technique was 1˚ and those used in the SDM technique were 1˚, 5˚, or 10˚. The torque of the propeller was similar in both the techniques; however, the thrust and resistance of the hull were computed lower when the SDM technique was applied than when the MRF technique was applied, and higher as the rotation angle of the propeller per time step in the SDM technique was smaller in the simulations for several revolutions of the propeller to estimate the self-propulsion condition. The revolutions, thrust, and torque of the propeller in the self-propulsion condition obtained using linear interpolation and the delivered power, wake fraction, thrust deduction factor, and revolutions of the propeller obtained using the full-scale prediction method showed the same trend for both the techniques; however, most of the self-propulsion efficiency showed the opposite trend for these techniques. The accuracy of the propeller wake was low in the simulations when the MRF technique was applied, and slight difference existed in the expression of the wake according to the rotation angle of the propeller per time step when the SDM technique was applied.

Robust Filter Based Wind Velocity Estimation Method for Unpowered Air Vehicle Without Air Speed Sensor (대기 속도 센서가 없는 무추력 항공기의 강인 필터 기반의 바람 속도 추정 기법)

  • Park, Yong-gonjong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • In this paper, a robust filter based wind velocity estimation algorithm without an air velocity sensor in an air vehicle is presented. The wind velocity is useful information for the air vehicle to perform precise guidance and control. In general, the wind velocity can be obtained by subtracting an air velocity which is obtained by an air velocity sensor such as a pitot-tube, and a ground velocity which is obtained by a navigation equipment. However, in order to simplify the configuration of the air vehicle, the wind estimation algorithm is necessary because the wind velocity can not be directly obtained if the air velocity measurement sensor is not used. At this time, the aerodynamic coefficient of the air vehicle changes due to the turbulence, which causes the uncertainty of the system model of the filter, and the wind estimation performance deteriorates. Therefore, in this study, we propose a wind estimation method using $H{\infty}$ filter to ensure robustness against aerodynamic coefficient uncertainty, and we confirmed through simulation that the proposed method improves the performance in the uncertainty of aerodynamic coefficient.