• Title/Summary/Keyword: 추력기

Search Result 680, Processing Time 0.021 seconds

High Gain Observer-based Robust Tracking Control of LIM for High Performance Automatic Picking System (고성능 자동피킹 시스템을 위한 선형 유도 모터의 고이득 관측기 기반의 강인 추종 제어)

  • Choi, Jung-Hyun;Kim, Jung-Su;Kim, Sanghoon;Yoo, Dong Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • To implement an automatic picking system (APS) in distribution center with high precision and high dynamics, this paper presents a high gain observer-based robust speed controller design for a linear induction motor (LIM) drive. The force disturbance as well as the mechanical parameter variations such as the mass and friction coefficient gives a direct influence on the speed control performance of APS. To guarantee a robust control performance, the system uncertainty caused by the force disturbance and mechanical parameter variations is estimated through a high gain disturbance observer and compensated by a feedforward manner. While a time-varying disturbance due to the mass variation can not be effectively compensated by using the conventional disturbance observer, the proposed scheme shows a robust performance in the presence of such uncertainty. A Simulink library has been developed for the LIM model from the state equation. Through comparative simulations based on Matlab - Simulink, it is proved that the proposed scheme has a robust control nature and is most suitable for APS.

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

Numerical Analysis on Aerodynamic Performances and Characteristics of Quad Tilt Rotor during Forward Flight (전진 비행하는 쿼드 틸트 로터의 공력성능 및 특징에 대한 수치적 연구)

  • Lee, Seonggi;Oh, Sejong;Choi, Seongwook;Lee, Yunggyo;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.197-209
    • /
    • 2018
  • In this study, numerical analyses on Quad Tilt Rotor(QTR) are carried out to investigate the interference effect of components and effect of operating condition during forward flight. Actuator Surface Method(ASM) which is implemented in an open source CFD code, OpenFOAM, is used to calculate the flow field around QTR with high computational efficiency. The lift of the front and rear wing is found to increase or decrease depending on the rotation direction of the rotor. At the rear wing, the interference effects of the front and rear rotor appear as a combined manner. Performance change due to the phase difference is found to be insignificant. For both rotors, the locally higher thrust is generated by the blockage effect of the wing. The interference effect of wake from the front nacelle contributes to higher local thrust for the rear rotor compared to the front rotor. And it is observed that the amplitude of thrust oscillation can decrease depending on the phase difference between the rotors. Aerodynamic performances of both rotors and the entire aircraft were compared and analyzed for various operating conditions.

Design of Large Multi-Electromagnetic Shaking System (대형 멀티 전자기 가진 시스템 설계)

  • Im, Jong-Min;Moon, Sang-Moo;Eun, Hee-Kwang;Choi, Seok-Weon;Choi, Joon-Min
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.76-81
    • /
    • 2008
  • The vibration test system of satellite environment test dept. has been used successfully for the vibration tests of a majority of korean space programs. To meet the recent needs of large size test facility available for the vibrational tests of the huge launch vehicles and satellites, KARI have developed the large size multi-electromagnetic shaking system with $3{\times}3m$ head expander system. The new system will consist of three electromagnetic shakers which has 160 kN thrust force individually, and be able to sustain up to 8 tons test load and 300 kNm overturing moment. This paper describes the design components in the development process of multi-excitation shaker system.

  • PDF

Hot-firing Test of Technology Demonstration Model Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 가스발생기 기술검증시제의 연소시험)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Kim, Mun-Ki;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.225-228
    • /
    • 2009
  • Hot-firing tests were performed on the gas generator which is a technology development/demonstration model for a 75 ton-class liquid rocket engine. A heat-sink type combustion chamber was used for initial performance examination of the injector and mixing head. This paper explains not only preparation works for hot-firing tests but also the acquired results such as pressure, temperature distribution, and pressure fluctuation.

  • PDF

Preliminary Design Plan for Determining Combustor Configuration of Regenerative-cooled Liquid Rocket Engine (재생냉각식 액체로켓엔진의 연소기 형상 결정을 위한 예비 설계 방안)

  • Son, Min;Seo, Min-Kyo;Koo, Ja-Ye;Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • A design plan was proposed for determining combustor configuration of regenerative- cooled liquid rocket engine in the process of preliminary design. Rocket performance and regenerative cooling results were calculated using the properties of combustion gas estimated in CEA. For required thrust, chamber pressure, atmosphere pressure and propellant mixture ratio the mass flow rate of propellants and combustor performance were predicted by one-dimensional and experimental correlations. Finally, determinable plan for the contour of combustor were presented through Rao nozzle design method.

Preliminary Design Plan for Determining Combustor Configuration of Regenerative-cooled Liquid Rocket Engine (재생냉각식 액체로켓엔진의 연소기 형상 결정을 위한 예비 설계 방안)

  • Son, Min;Seo, Min-Kyo;Koo, Ja-Ye;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.37-42
    • /
    • 2010
  • A design plan was proposed for determining combustor configuration of regenerative- cooled liquid rocket engine in the process of preliminary design. Rocket performance and regenerative cooling results were calculated using the properties of combustion gas estimated in CEA. For required thrust, chamber pressure, atmosphere pressure and propellant mixture ratio the mass flow rate of propellants and combustor performance were predicted using one-dimensional and experimental equations. Finally, determinable plan for contour of combustor were presented through Rao nozzle design method.

  • PDF

Design and Fabrication of Technology Demonstration Model of 75 tonf Regenerative Cooling Thrust Chamber (75톤급 재생냉각 연소기 기술검증용 시제 설계 및 제작)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Mun-Ki;Kang, Dong-Hyuk;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.31-34
    • /
    • 2011
  • Design and fabrication of Technology Demonstration Model(TDM) of 75 tonf regenerative cooling thrust chamber were described. It has design chamber pressure of 60 bar, propellant mass flow rate of 243.6 kg/s, and nozzle expansion ratio of 12. It has a single welded structure of the mixing head and the chamber. Design and fabrication technologies established through this TDM can be used to development of flight model.

  • PDF

파워 효과를 고려한 스마트 무인기의 공력해석

  • Kim, Cheol-Wan;Chung, Jin-Deog
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • To validate the rotor performance analysis, 3D Computational Fluid Dynamics(CFD) analysis was performed for tilt rotor aeroacoustic model(TRAM). Also, 3D vehicle with rotating rotors was simulated for rotor power effect analysis. Multiple reference frame(MRF) and sliding mesh techniques were implemented to capture the effect of rotor revolution. CFD results were compared with the wind tunnel test results to validate their accuracy. At helicopter mode, CFD analysis predicted lower thrust than the wind tunnel test but CFD results showed good agreement with the test result at cruise mode. Rotor power effect decreased the lift but did not change drag and pitching moment.

  • PDF

Study on Spray Angle of a Throttleable Pintle Injector according to Total Momentum Ratio based on Hot Fire Test Conditions (연소시험 조건 기반 총운동량비에 따른 가변추력 핀틀 분사기의 분무각 분석)

  • Heo, Subeom;Kim, Dae Hwan;Lee, Suji;Yoon, Youngbin
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.126-131
    • /
    • 2020
  • Throttleable rocket engines are in high demand due to the diversification of space missions. Pintle injector is known to be suitable for throttleable rocket engines, because of its high efficiency in overall thrust zone. In this study, the relationship between spray angle of a throttleable pintle injector and total momentum ratio based on hot fire test conditions was investigated. As a result, the spray angle in 100% and 60% throttling level is higher than the spray angle obtained by the case which considers only propellant mass flow rate, owing to higher total momentum ratio (TMR). The results of this study may be useful for predicting spray angle in hot fire test.