• Title/Summary/Keyword: 추가 변형률

Search Result 129, Processing Time 0.023 seconds

Undamped Forced Vibration Response of Curved Composite Panels using Enhanced Assumed Strain Finite Element-Direct Integration Method (추가변형률 유한요소-직접적분법을 이용한 복합적층 곡선패널의 비감쇠 강제진동응답)

  • Park, Won-Tae;Chun, Kyoung-Sik;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • The composite shell element is developed for the solution of undamped forced vibration problem of composite curved panels. The finite element used in the current study is an 4-node enhanced assumed shell element with six degrees of freedom per node. The composite shell element is free of both shear and membrane locking phenomenon by using the enhanced assumed strain(EAS) method. A modification to the first-order shear deformation shell theory is proposed, which results in parabolic thorough-thickness distribution of the transverse shear strains and stresses. It eliminates the need for shear correction factors in the first order theory. Newmark's direct integration technique is used for carrying out the integration of the equation motion, to obtain the repones history. Parametric studies of curved composite panels are carried out for forced vibration analysis by geometrical shapes and by laminated composite; such as fiber orientation, stacking sequence.

The formability of high strength steel plate applied TRB for stamping (스탬핑용 고강도강 TRB 판재의 성형 특성)

  • Park, Hyun-kyung;Jeong, Ji-Won;Lee, Gyung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.184-189
    • /
    • 2018
  • Recently, research on lightweight automobiles is increasing continuously to respond to the high safety standards and environmental regulations. The application of high strength steel is one of the effective methods for developing lightweight car bodies. A TWB (Tailor Welded Blank) is major method that allows partial high strength with light weighting using a multi-thickness and multi-material welded blank. On the other hand, additional welding process is required to prepare the blank and quality control for the welding process also required. To secure this point, the TRB (Tailor Rolled Blank) method was suggested. In the TRB method, the thickness of sheet is controlled by the rolling presses and the production efficiency is much higher than welding in TWB methods. In this study, the formability of high strength TRB steel plate was analyzed to examine the rolling effect of the blank. The formability of the specimen was tested using 0.8 and 1 mm thick steel sheets for the TRB plate. The strain was analyzed by the digital image sensing of grid markings on the specimen and the forming limit diagram was calculated. An Erichsen test for the 0.8 and 1 mm thick TRB specimens was carried out and the formability was investigated by comparing with FE analysis.

A Study on the Development of Floor-Fixed Standpipe Sway Brace for Narrow Space (협소공간전용 바닥고정형 입상관 흔들림방지버팀대 개발에 관한 연구)

  • Jin, Se-Young;Choi, Su-Gil;Park, Sang-Min;Yeon, Tae-Young;Kim, Chang-Su;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • This paper proposes a solution to the problems of constructing and installing sway braces for existing standpipes in narrow spaces and pits. The study develops a floor-fixed sway brace for a narrow space that can support the ground area under horizontal seismic loads (X-axis, Y-axis) as well as vertical seismic loads (Z-axis). The results of structural analysis using SolidWorks simulation showed that the eccentric load was generated in the first design according to the anchored position along the vertical direction, and the problem of exceeding the allowable stress of the material along the horizontal and vertical directions. In the second design model, deformation caused by the eccentric load along the vertical direction, similar to the first design model, did not occur. The maximum strain rate was 0.17%, which is approximately 12.84% less than the first design model (Maximum strain rate of 13.01%). It was confirmed that the structural stability and durability improved. Compressive and tensile load testing of the prototypes showed that all of them meet the performance criteria of the standard.

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

A Study on the Application of Numerical Model to Predict Behaviour of EPS (EPS 거동 예측 모델의 적용성에 대한 연구)

  • Cheon, Byeong-Sik;Yu, Han-Gyu;Im, Hae-Sik
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.185-198
    • /
    • 1996
  • EPS is increasingly used as a filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, which, in turn, increases the bearing capacity and reduces the settlement. EPS can also be used as a backfill material for retaining walls and abutments to reduce the horizontal earth pressure. However, there is no rational application for the selection of the EPS fill which is essential to the selection of the filling configuration and the settlement calculation. In this paper, therefore, the nonlinear numerical model developed from the results of triaxial compression tests is applied to the construction of EPS and verified through the comparison between the prediction and in-situ measurements.

  • PDF

Friction Characteristics of Geogrid -Light Weight Soil Mixed with Small Pieces of Waste EPS (지오그리드-폐 EPS조각 혼합경량토의 마찰특성)

  • 김홍택;방윤경
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.163-184
    • /
    • 1996
  • In this study, physical and geotechnical properties of the light weight mixed soil( weathered granite soil mixed with small pieces of waste EPS) were analyzed by laboratory experiments to examine its suitability for backfill materials of the reinforced-earth walls. Friction characteristics of geogrid-light weight sized soil were also investigated by performing the pullout tests for two types of geogrids having different flexural rigidity. Also a procedure was proposed to evaluate friction strength between geogrid and light weight miffed soil by using a stress-strain relationship of the orthotropic composite material subjected to both longitudinal and vertical loadings. By the procedure proposed in this study, values of the calibration coefficients ul and uf applicable for the evaluation of friction strengths between two types of geogrids and light weight mixed soils were further presented.

  • PDF

Strain Analysis of Longitudinal Reinforcing Steels of RC Bridge Piers Under Shaking Test (진동대 실험에 의한 RC교각의 주철근 변형률 분석)

  • Hong, Hyun-Ki;Yang, Dong-Wook;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.93-96
    • /
    • 2008
  • The near fault ground motion(NFGM) is characterized by a single long period velocity pulse of large magnitude. NFGM's have been observed in recent strong earthquakes, Turkey Izmit (1999), Japan Kobe(1995), Northridge(1994), etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far fault ground motion(FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this study is to investigate and analyze the effect of near-fault ground motions on RC bridge piers without lap-spliced longitudinal reinforcing steels. The seismic performance of two RC bridge piers under near-fault ground motions was investigated on the shake table. In addition, Two of four identical RC bridge piers were tested under a quasi-static load, and the others were under a pseudo-dynamic load. The respectively two RC bridge pier is comparatively subjected to Pseudo-dynamic loadings and Quasi-Static loadings. This paper indicated that more gives bigger ultimate strain of longitudinal steels to be fractured at bigger PGA motion.

  • PDF

Hetero-core Optical Fiber Exposure Sensor Module and Instrumentation Delay (헤테로코어 광파이버 노출형 센서모듈과 계측 지연현상)

  • Song, Young-Yong;Park, Eik-Tae;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.401-408
    • /
    • 2019
  • The objective of this study is to develop a new type of buried sensor module that can directly assess pre-stressed concrete by measuring strain using a hetero-core optical fiber sensor. In this regard, experiments were conducted to evaluate the performance of the sensor using an exposure sensor module. Based on the experimental results, when the values of the displacement control velocity were 0.12 mm/min and 1.80 mm/min, the corresponding delays in the measurement were 52.1 s and 2.6 s respectively, which indicated that the maximum delay between the two measurements was a factor of 19. Due to the measurement delay phenomena, the sensor module used in the experiments cannot be employed to check the real-time state of the structure. Thus, additional experiments were needed to develop a new sensor module that can measure the real-time state of the structure. To investigate the cause of the measurement delay phenomena, three experiments were conducted. It was confirmed that measurement delay is mainly attributed to frictional resistance. The measurement delay phenomena were not observed in the experiments using the friction-removed device.

Characteristics of Flow Field and IR of Double Serpentine Nozzle Plume for Varying Cross Sectional Areas and Flight Conditions in UCAV (Double Serpentine 노즐의 단면적과 비행조건 변화에 따른 UCAV의 플룸 유동장 및 IR 특성 연구)

  • Lee, Yu-Ryeol;Lee, Ji-Won;Shin, Chang-Min;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.689-698
    • /
    • 2021
  • The development of modern warfare detection technology is increasingly threatening the survivability of aircraft. Among them, IR-seeking missiles greatly affect the survivability of aircraft and are a main factor that reduces the success rate of aircraft missions. In order to increase aircraft survivability, studies on shape-modifying nozzles with added curvature are being actively conducted. In this study, we selected a double serpentine nozzle among shape-modifying nozzles to increase aircraft survivability. We then investigated the effects of the location of the maximum area change rate of the nozzle. It was confirmed that the location of the change rate of area affects the thrust and exit temperature of the nozzle. In addition, it was shown that the thrust penalty was reduced as the position of the change rate of the maximum area was located at the rear of the nozzle.

Buckling Load and Mode Analysis of Symmetric Multi-laminated Cylinders with Elliptical Cross-section (다층 대칭배열된 타원형 적층관의 좌굴하중 및 모드해석)

  • Chun, Kyoung Sik;Son, Byung Jik;Ji, Hyo Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.457-464
    • /
    • 2006
  • Fiber-reinforced composite materials due to their high specific strength, high stiffness and light weight are becoming increasingly used in many engineering industry, especially in the aerospace, marin and civil, etc. In this paper, the buckling load and mode shapes of composite laminates with elliptical cross-section including transverse shear deformations are analyzed. For solving this problems, a versatile flat shell element has been developed by combining a membrane element with drilling degree-of-freedom and a plate bending element. Also, an improved shell element has been established by the combined use of the addition of enhanced assumed strain and the substitute shear strain fields. The combined influence of shell geometry and elliptical cross-sectional parameter, fiber angle, and lay-up on the buckling loads of elliptical cylinder is examined. The critical buckling loads and mode shapes analyzed here may serve as a benchmark for future investigations.