• Title/Summary/Keyword: 최 북서쪽

Search Result 14, Processing Time 0.022 seconds

Magnetic anomaly in the southern part of the Yellow Sea (서해남부해역의 지자기 이상대 해석)

  • Kim, Sung-Bae;Choi, Sung-Ho;Suh, Man-Cheol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.85-92
    • /
    • 2008
  • National Oceanographic Research Institute is carrying out an oceanographic survey for the entire sea areas around Korean Peninsula annually starting with the East Sea from 1996 by establishing a national oceanographic basic map survey plan for the sea areas under the jurisdiction of Korea, so this paper used the oceanographic geomagnetism data measured at the southern area of the Yellow Sea using 'Hae Yang 2000' in 1999, aiming at clarifying the cause of geomagnetic abnormality zone during the course of treating and analyzing the geomagnetic data. For treatment of magnetic data, we obtained electromagnetic force values and geomagnetic abnormality values around the investigated sea area through a process of searching and removal of bad data, correction of sensor positions, correction of magnetic field effects around the hull, correction of diurnal variation, normal correction, correction of cross point errors, etc. The electromagnetic force distribution around the investigated sea area was $49000\;{\sim}\;51600\;nT$, which is judged to be within the normal electromagnetic force intensity distribution range around the Yellow Sea. The isodynamic lines are distributed in Northeast-Southwest direction, and electromagnetic force values are increasing toward the northwest. The result of comparing the magnetic abnormality around the sea area among $124^{\circ}$ 49' 48" E, $35^{\circ}$ 10' 48" N $\sim$ $125^{\circ}$ 7' 48" E, and $35^{\circ}$ 33' 00" N sections with the elastic wave cross section and the result of modeling coincide well with the underground geological structure clarified from the existing elastic wave survey cross section. Therefore, it is judged that the distribution of magnetic force abnormality generally shows the effect pursuant to the distribution of the sedimentary basins in the Tertiary period and the bedrocks in the Cretaceous period which are well developed in the bottom of the sea.

  • PDF

Seismic Stratigraphy and Structural Evolution in Domi Basin, South Sea of Korea (남해 대륙붕 도미분지의 탄성파총서와 구조운동)

  • Kim, Eun-Jung;Oh, Jin-Yong;Chang, Tae-Woo;Yun, Hye-Su;Yu, In-Chang
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.53-62
    • /
    • 2008
  • Seismic interpretation was carried out based on biostratigraphy of Fukue-1 well in Japan side of the Domi Basin and compared with the Cheju Basin and Tertiary basins in north-west Kyushu. East China Sea Basin including Domi Basin began to develope in the latest Cretaceous$\sim$Paleocene related to rifting. The basin was filled with a thick package of syn-rift sediments during Paleocene to Oligocene and was under post-rift stage effected by transtenssion during Miocene. Previous studies suggest that the basin had been mostly filled with Miocene formation (>3 km), but the Miocene formation is interpreted to be comparatively thin in this study. The thickness of the Miocene formation varies from tens of meters to hundreds of meters and become thicker to the south-west of Cheju Basin. The index taxa of the Oligocene$\sim$Eocene nannofossils and dinoflagellates found in the Cheju Basin and Tertiary basins in north-west Kyushu also corroborate the result of this study.

  • PDF

THE CIRCULATION IN CHINJU BAY 2. Results of Drift Bottle Experiments (진주만의 해수 유동에 관하여 2. 해류병 표류 실험 결과)

  • CHANG Sun-duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.137-147
    • /
    • 1970
  • From November 1968 to March 1970, a series of drift bottle experiments were carried out in waters adjacent to and in Chinju Bay with the following results. Of the bottles released, $50\~69$ per cent were recovered. 1. The circulation of Chinju Bay is usually caused by the tidal current except during the winter season when the northwest monsoon prevails to cause a wind-drift current. 2. Sea water in the southern part of Chinju Bay flows northward at ebb tide. The ebb current east of the central submarine bank in Chinju Bay flows northeastward toward Samchonpo Channel through the eastern depression of the bank contributing to form a cyclonic eddy. The ebb current west of the bank, however, flows northward toward Noryang Channel through the western depression of the bank. 3. The ebb current nea. the southernmost part of Chinju Bay flows eastward toward Chijok Channel. 4. At flood tide, the main stream of the tidal current in Noryang Channel flows eastward. Turning smoothly to the right, the southern branch of the flood current flows southward through the depression and along the isobaths at the western margin of the central submarine bank, while the northern branch, turning to the left, flows into the Chin-gyo Bay of Hadong. 5. flood current in the eastern area of Kwang-yang Inlet runs northeastward toward Noryang Channel. A small eddy develops near Kwanumpo of Namhae Island. 6. The results suggest that such a drift bottle experiment can be recommended for the attestation of currents, although it is not suitable for a quantitative study of coastal currents.

  • PDF

Review on the Triassic Post-collisional Magmatism in the Qinling Collision Belt (친링 충돌대의 트라이아스기 충돌 후 화성작용에 대한 리뷰)

  • Oh, Chang Whan;Lee, Byung Choon;Yi, Sang-Bong;Zhang, Cheng Li
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.293-309
    • /
    • 2014
  • The Qinling-Dabie-Sulu-Hongseong-Odesan collision belt was formed by the collision between the North China and South China Cratons during late Permian to Triassic. During the collision, Triassic post-collision igneous rocks regionally intruded in the Qinling and the Hongseong-Odesan collision belts which represent the western and eastern ends of the collision belt, respectively. However, no and minor Triassic post-collision igneous activities occur in the Dabie and Sulu belts respectively. The peak metamorphic pressure conditions along the Qinling-Dabie-Sulu-Hongseong-Odesan belt indicate that the slab break-off occurred at the depth of ultra-high pressure (UHP) metamorphic condition in the Dabie and Sulu belts and at the depths of high pressure (HP) or high pressure granulite (HPG) metamorphic condition in the Qinling and Hongseong-Odesan belts. In the Dabie and Sulu belts the heat supply from the asthenospheric mantle through the gab formed by slab break-off could not cause an extensive melting in the lower continental crust and lithospheric mantle directly below it due to the very deep depth of slab break-off. On the other hand, in the Qinling and Hongseong-Odesan belts, shallower slab break-off caused the emplacement of regional post collision igneous rocks. The post-collision igneous rocks occur in the area to the north of the Mianlu Suture zone in the western Qinling belt and crop out continuously eastwards into the areas to the north of the Shangdan Suture zone in the eastern Qinling belt through the areas within the South Qinling block. This distribution pattern of post collision igneous rocks suggests that the Triassic collision belt in the Mianleu Suture zone may be extended into the Shangdan Suture zone after passing through the South Qinling block instead into the boundary between the South Qinling block and the South China Craton.