• Title/Summary/Keyword: 최종침하량

Search Result 73, Processing Time 0.03 seconds

Soft Ground Improvement using Electrokinetic Geosynthetics (복합동전기토목섬유를 이용한 연약지반개량)

  • Lee, Myung-Ho;Han, Jung-Geun;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.25-30
    • /
    • 2007
  • The major reason to employ electrokinetic geosynthetics is to take advantage of its ability to densify very low permeability materials in shorter time periods than ordinary seepage consolidation. A number of laboratory scale experiments was carried out with acrylic column using natural clayey soil. The testing results indicate that (1) the electrically induced settlement was faster than the gravitational one, (2) the higher the voltage, the faster the dewatering but the less final settlement, and (3) the pH extended as low as 3 in the anode section and as high as 11 near the cathode.

  • PDF

Cast study on the Design Application of Final Settlement in Soft Ground (연약지반 최종침하량의 설계 적용성에 관한 사례연구)

  • Kim, Young-Su;Park, See-Boum;Kim, Kyung-Tae;Kim, Chang-Hyun;Kim, Hyun-Gu;Yook, Il-Dong;Kim, Hung-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.948-955
    • /
    • 2005
  • In this case of study, Incheon International Airport 2nd phase site preparation 1st section estimated final settlement to improve soft ground. Final settlement is very important in preloading method. Recently, Hyperbolic method, Hoshino method and Asaoka method are used mostly in prediction of final settlement and this paper, Comparing a result of Final settlement, used to Artificial Neural Network. The structure of Dynamic Artificial Neural Network which predicted Final settlement, has application to Young_Jong Island other site, If new investigation data will be added. Also, It is expected to save measuring_system cost in soft ground.

  • PDF

Consolidation Behavior of Soft Ground by prefabricated Vertical Drains (연직드레인 공법에 의한 연약지반의 압밀거동)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.133-143
    • /
    • 2000
  • A large scale field test of prefabricated vertical drains was performed to anayze the effect of parameters of the very soft clay at a test site. compression index and the coefficient of horizontal consolidation obtained by back-analysis of settlement data were compared with those obtained by means of laboratory tests. Hyperbolic method, Asaoka meoth and curve fitting method were used to compute final settlement of coefficient of consolidation. The relationships of settlement measurement(Sm) versus design settlement(St) and the measurement consolidation ratio(Um) versus design consolidation (Ut) were shown as Sm=(1.0~1.1) St , Um=(1.13~1.17) Ut at 1.0m spacing of drain and Sm=(0.7~0.8)St, Um= (0.92~0.99) Ut at 1.5 m spacing of drain, respectively . The relationships of the field compression index(CcField) and virgin compression index(vcc lab) were shown as Ccfield =(1.0~1.2)vcc lab . But it was nearly within the same range when considering the error factor with the determination method of virgin compression index and the prediction back-analysis of the settlement data was larger than the coefficient of vertical consolidation, and the ratio of consolidation coefficient (Ch/Cv) was Ch =(2.4~2.9) Cv , Ch=(3.4~4.2) Cv at 1.0m and 1.5m spacing of drain, respectively.

  • PDF

Design of Vertical Drain in Consideration of Smear Effect and Well Resistance (교란효과와 배수저항을 고려한 연직 배수재 설계)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.115-123
    • /
    • 2000
  • This study compared the degree of consolidation by hyperbolic, curve fitting , Asaoka's and methods using values measured with a theoretical curve in consideration of smear effect and well resistance. The degree of consolidation by the Hyperboilc method was underestimated than the degree of consolidation by Curve fitting. Asaoka's , and Monden's methods. The typical range of the coefficient of horizontal consolidation was Ch=(2-3)Cv in the case considering smear effect and well resistance, and Ch =(0.5-2.1) Cv in the case disregarding smear effect and well resistance. The degree of consolidation obtained by ground settlement monitoring was nearly the same value when the coefficient of smear zone permeability by back analysis was shown to be half that of in-situ and the diameter of the smear zone was shown to be double that of mandrel. By increasing the diameter reduction ratio of the drain, the time of consolidation was delayed. The effect of well resistance showed that the case of a small coefficient of permeability was much more than in the case of a large coefficient of permeability . It was recommended that when designing diameter reduction of a drain, well resistance should be considered.

  • PDF

Nonlinear Consolidation Analysis Considering Radial Drainage (수평배수를 고려한 비선형 압밀해석)

  • Lee, Song;Chae, Young-Su;Hwang, Koou-Ho;Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.105-115
    • /
    • 2000
  • 본 연구는 현실에 부합하는 연약지반의 압밀거동을 예측하기 위한 연구로서, 일단 3차원 배수 조건하에서 지반의 자중 및 압축성과 투수성의 비선형적 성질이 고려된 비선형 압밀모델을 구성하였다. 또한 연직 배수재의 시공과정에서 발생할수 있는 지반의 교란현상 및 다양한 이질층의 구성, 점증적인 하중재하 조건, 연직배수재의 부분관입 조건에 대한 고려가 가능하도록 비선형 압밀모델을 수정, 보완하였다. 이상의 연구결과를 바탕으로 유한차분방법에 의한 수치해석을 실시하였고 최종적으로 각종 희귀분석과정을 도입한 3차원 비선형 압밀해석 프로그램을 개발하였다. Ska-Edeby의 시험시공 사례를 통한 개발 프로그램의 검증을 실시하였는데, 시험시공 사례의 경우, 현장에서 측정한 깊이별 침하량 및 간극수압 결과를 개발 프로그램에 의한 예측결과와 비교, 분석하였다. 또한 개발 프로그램을 이용하여 다층지반 해석과 관련된 기존 해석방법의 문제점 및 지반의 교란효과와 연직배수재의 부분관입조건, 점증적인 하중재하 조건등이 지반의 압밀거동에 미치는 영향에 대해 살펴보았다.

  • PDF

Evaluation of Structural Stability of Plastic Greenhouses with Steel Spiral Piles on Reclaimed Lands (간척지에서 강재 나선말뚝기초를 적용한 플라스틱 온실의 안전성 평가)

  • Yum, Sung Hyun;Lee, Won Bok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • This study was carried out to estimate structural stabilities in respect of ground footings of plastic greenhouses on reclaimed lands. A 6m-wide multi-span plastic greenhouse with steel spiral piles as well as two 8.2m-wide single-span greenhouses with steel spiral piles and continuous pipe foundation respectively were built up on a reclaimed land with a SPT N-Value of 2 and measured how much the greenhouses were lifted up and subsided. In addition, the uplift capacity of three kinds of spiral piles(${\phi}50$, ${\phi}75$ and ${\phi}100$) was determined on a nearby reclaimed land. The results showed that the greenhouses with spiral piles had a slight vertical displacement like moving up and down but the scales of the rising up and sinking were negligible when compared to that of the greenhouses. The vertical displacement of the multi-span greenhouse ranged from +9.0mm(uplift) to -11.5mm(subsidence). As for the single-span greenhouses with spiral piles and continuous pipe foundation, the measurements showed that it varied from +1.3mm to -7.7mm and from +0.9mm to -11.2mm, respectively. The allowable uplift capacity of spiral piles could all be determined under criteria of ultimate load and accordingly had a value of 0.40kN, 1.0kN and 2.5kN, respectively. It was not entirely certain enough to make a final judgement on structural stabilities in respect of ground footings, it appeared likely however that the greenhouses with steel spiral piles was tentatively observed without any problems on reclaimed lands within the period.

Behaviour of the Excess Pore Pressure Induced by Sand Mat on the Soft Clay (점토지반 샌드매트의 간극수압 거동)

  • Kim, Hyeong-Joo;Lee, Min-Sun;Paek, Pil-Soon;Jeon, Hye-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.55-62
    • /
    • 2006
  • The design of sand mat should be reviewed by the behaviour of excess pore pressure which is obtained by combining characteristics of soft ground with the permeability of sand mat. In this paper, in order to investigate the distribution of hydraulic gradient of sand mat, a banking model test was performed using dredged sand as materials of sand mat, and these results were compared by the numerical analysis results utilizing Terzaghi's consolidation equation. The results show that the pore pressure was influenced by the settlement increasing in the central area of sand mat as the height of embankment increases, and uprising speed of excess pore pressure due to residing water pressure is delayed compared with the results of numerical analysis. Finally, the construction of sand mat should be spreaded to reduce the increased hydraulic gradient at the central area of embankment.

A New Proposed Technique for a Secondary Consolidation Coefficient Based on the Constant Rate of Strain Test (CRS시험에 의한 2차압밀계수의 결정방법 제안)

  • 김형주;이민선;이용주;김대우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.113-121
    • /
    • 2004
  • The present study is suggested to estimate the degree of secondary consolidation caused by various changes of stress such as loading, unloading and reloading in improving poor subsoil through pre-compression loading construction method and, for this purpose, examined the characteristics of the consolidation of Kunsan clay through incremental loading test (IL) using standard consolidation tester and constant loading rate test (CLR), which were adapted from the constant rate of strain test (CRS). In addition, after CRS test, this study determined the characteristics of secondary consolidation and relationships among void ratio, effective stress and time according to the ratio of effective over-consolidation on reloading at the point of time of random expansion. Kunsan clay had larger expansion and smaller secondary consolidation settlement when the ratio of effective over-consolidation was high. In addition, when loading was applied after the load was removed at once, the secondary consolidation coefficient $C'_{\alpha}$ was smaller than that when the load was removed gradually, and when the ratio of effective over-consolidation was over 1.4 a similar value was produced. Based on the entire settlement resulting from reloading, the secondary consolidation coefficient $C"_{\alpha}$ increased non-linearly with the lapse of time but the final value was similar to that in the case of rapid removal. The strain velocity of void ratio was in a regular linear relationship with the increase of loading time regardless of the ratio of effective over-consolidation in both tests and it grew smaller with the increase of the ratio of effective over-consolidation.tion.

The evaluation of applicability for several final settlement prediction methods to field settlement management by measurement results carried on embankment on the soft clays (계측결과를 이용한 연약지반상 성토시의 최종침하량예측기법들의 현장적용성)

  • Kim, Jong-Ryeol;Gang, Hee-Bog;Choi, Ju-Myoung;Hwang, Soung-Won;Kim, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.924-931
    • /
    • 2005
  • In this study, we intended to compare and examine several settlement management methods by analyzing measurement results of a site of the industrial complex at ${\bigcirc}{\bigcirc}$ province. We predicted and analyzed the amount of final settlement by using generally used final settlement methods as like Hyperbola method, Hoshino methods and Asaoka method. And then, We compared the predicted results with that of measurement. On the basis of comparison of the three methods, Hyperbola method was the most convenient and accurate method of the three methods and if a sufficient time was given enough after embankment construction, the use of Hoshino method was possible. In the case of the Asaoka methods, it was possible to know that it had an approaching tendency to the measured one with increasing time interval spent on analysis. Therefore, in order to predict settlement behavior more accurately it is needed to understand their advantages and shortcomings sufficiently and pay attention to application to the real site.

  • PDF

Consolidation Behavior of Soft Ground by Prefabricated Vertical Drains (페이퍼드레인 공법에 의한 연약지반의 압밀거동)

  • Lee, Dal Won;Kang, Yea Mook;Kim, Seong Wan;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.145-155
    • /
    • 1997
  • The large scaled field test by prefabricated vertical drains was performed to evaluate the superiority of vertical discharge capacity for drain materials through compare and analyze the time-settlement behavior with drain spacing and the compression index and consolidation coefficient obtained by laboratory experiments and field monitoring system. 1. The relation of measurement settlement($S_m$) versus design settlement($S_t$) and measurement consolidation ratio($U_m$) versus design consolidation ratio($U_t$) were shown $S_m=(1.0{\sim}1.1)S_t$, $U_m=(1.13{\sim}1.17)U_t$ at 1.0m drain spacing and $S_m=(0.7{\sim}0.8)S_t$, $U_m=(0.92{\sim}0.99)U_t$ at l.5m drain spacing, respectively. 2. The relation of field compressing index($C_{cfield}$) and virgin compression index($V_{cclab.}$) was shown $C_{cfield}=(1.0{\sim}1.2)V_{cclab.}$, But it was nearly same value when considered the error with determination method of virgin compression index and prediction method of total settlement. 3. Field consolidation coefficient was larger than laboratory consolidation coefficient, and the consolidation coefficient ratio($C_h/C_v$) were $C_h=(2.4{\sim}3.0)C_v$. $C_h=(3.5{\sim}4.3)C_v$ at 1.0m and 1.5m drain spacing and increased with increasing of drain spacing. 4. The evaluation of vertical discharge capacity with drain spacing from the results of the consolidation coefficient ratio showed largely superior in case the Mebra drain and Amer drain than other drain materials at 1.0m and 1.5m drain spacing, while the values showed nearly same value in case same drain spacing.

  • PDF