• Title/Summary/Keyword: 최적 표면조도

Search Result 91, Processing Time 0.029 seconds

Fabrication of TiAl alloy by centrifugal casting and its microstructure (원심주조법에 의한 TiAl 합금의 제조 및 미세구조 분석)

  • Ryu, Jeong Ho;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Lee, Jung-Il
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.229-234
    • /
    • 2017
  • In this study, TiAl alloy was fabricated by a centrifugal casting method for turbo charge of automotive. Optimum conditions for defectless morphology using various ceramic mold were investigated. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometer (XRD), optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS), microvickers hardness analyzer (HV). Two kinds of dendrite structures were observed with 4-fold and 6-fold symmetries. The FE-SEM, EDS and HV examinations of the as-cast TiAl showed that the thickness of the oxide layer (${\alpha}$-case) was typically less than $50{\mu}m$.

Continuous Nitrate Removal using Bipolar ZVI Packed Bed Electrolytic Cell (영가철(Fe0) 충진 복극전해조를 이용한 질산성질소의 연속식 제거 연구)

  • Jeong, Joo-Young;Kim, Han-Ki;Shin, Ja-Won;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.79-84
    • /
    • 2012
  • Nitrate is a common contaminant in groundwater aquifer. The present study investigates the performance of the bipolar zero valent iron (ZVI, $Fe^0$) packed bed electrolytic cell in removing nitrate in different operating conditions. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous experiments for the simulated wastewater (contaminated groundwater, initial nitrate about 30 mg/L as N and electrical conductivity about 300 ${\mu}S/cm$), over 99% removal of nitrate was achieved in the applied voltage 600 V and at the flow rate of 20 mL/min. The optimum packing ratio (v/v) and flow rate were determined to be 1:1~2:1 (silica sand to ZVI), 30 mL/ min respectively. Effluent pH was proportional to nitrate influx concentration, and ammonia which is the final product of nitrate reduction was about 60% of nitrate influx. Magnetite was observed on the surface of the used ZVI as major oxidation product.

Synthesis of High Purity p-Phenylenediamine from p-Nitroaniline by Catalytic Hydrogenation (Pd/C촉매하 파라니트로아닐린 수소첨가에 의한 고순도 파라페닐렌디아민의 합성공정)

  • Cho, Chul Kun;Chung, Kwang Bo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1210-1215
    • /
    • 1999
  • Optimum conditions of the hydrogenation of PNA to pure PPD were determined in a three-phase slurry reactor with suspended Pd/C catalyst particles. Minimization of mass transfer resistances at the interfaces of both gas-liquid and liquid-catalyst particles and control of overall reaction rate on catalyst surface leaded to decrease the hydrogen starvation on reaction active sites and to reduce the side reactions during hydrogenation. The optimum temperature, pressure, and catalysst concentration were confirmed to be in the range of $60^{\circ}C$, 60~70 psig, and 1~2 g-cat/L, respectively. Reaction rate was zero order with respect to the concentration of PNA and 1st order with respect to the pressure of hydrogen(P). Overall rate expression of the reaction was $R_A=6.44{\times}10^6{\cdot}H{\cdot}P{\cdot}m{\cdot}$exp(-4659/T) where H is constant, m is concentration of catalyst, and T is temperature.

  • PDF

Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus (히알루론산 생산성 향상을 위한 Streptococcus zooepidemicus 균주 개량 및 발효조 배양공정 최적화)

  • Kim, Soo Yeon;Chun, Gie-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.344-357
    • /
    • 2020
  • Strain improvement and bioprocess development were undertaken to enhance hyaluronic acid(HA) production by Streptococcus zooepidemicus cells. Using a high-yielding mutant strain, statistical medium optimization was carried out in shake flask cultures, resulting in 52% increase in HA production (5.38 g/l) at the optimal medium composition relative to the parallel control cultures. For sufficient supply of dissolved oxygen (DO), which turned out to be crucial for enhanced production of HA, agitation system and speed were intensively investigated in 5 L bioreactor cultures. Increase in oxygen mass transfer coefficient (kLa) through increment of agitation speed (rpm) and 35% expansion of diameter of the newly-designed impellers showed significantly positive effects on HA production. By installing an expanded Rushton-turbine impeller for efficient break-down of sparged air, and an extended marine impeller above the Rushton-turbine impeller for efficient mixing of the air-born viscous fermentation broth, maximum amount of HA (9.79 g/l) was obtained at 450 rpm, 1.8 times higher level than that of the corresponding flask culture. Subsequently, the possibility of bioprocess scale-up to a 50 L bioreactor was investigated. Despite almost identical maximum HA production (9.11 vs 9.25 g/l), the average HA volumetric productivity (rp) of the 50 L culture turned out only 74% compared to the corresponding 5 L culture during the exponential phase, possibly caused by shear damages imposed on the producing cells at the high stirring in the 50 L culture. The scale-up process could be successfully achieved if a scale-up criterion of constant oxygen mass transfer coefficient (kLa) is applied to the 50 L pilot-scale bioreactor system.

Optimization of the Preparation Conditions and Quality Characteristics of Sweet Pumpkin-Doenjang Sauce (단호박된장소스 제조조건의 최적화 및 품질 특성)

  • Chang, Kyung-Ho;Cho, Kyung-Hoon;Kang, Min-Kyung
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.492-500
    • /
    • 2012
  • This study was conducted to develop a sauce prepared with sweet pumpkin and Korea Doenjang. The optimum conditions for manufacturing sweet pumpkin-doenjang sauce were investigated using the response surface methodology, based on the central composition design. The amount of stock added, the thickening agent, and doenjang were used as the independent variables, and the sensory characteristics (taste, flavor, color, and overall acceptability) were used as the dependent variables to evaluate the optimum conditions for the preparation of the sauce. The optimum conditions for the maximized-responses variables in the preparation of the sauce were 448.5 g of sweet pumpkin stock, 331.5 g of the thickening agent, and 20.0 g of doenjang. The quality characteristics of sweet pumpkin-doenjang sauce that was manufactured at optimum conditions were as follow: 89.55% moisture content, 0.70% crude protein, 0.10% crude lipids, and 0.71% crude ash. The pH of the sauce was 5.96; total acidity, 0.08%; and soluble solids, 6.80$^{\circ}Brix$. The total polyphenol content of the sauce was 5.70 mg/L. The electron-donating ability and reducing power of the sauce were, 14.24% and 1.64 OD, respectively.

Cytotoxic Effect of Isolated Protein-bound Polysaccharides from Hypsizigus marmoreus Extracts by Response Surface Methodology (반응표면분석에 의한 해송이버섯(Hypsizigus marmoreus) 추출물 중 단백다당체의 암세포 성장억제효과)

  • Jung, Eun-Bong;Jo, Jin-Ho;Cho, Seung-Mock
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.12
    • /
    • pp.1647-1653
    • /
    • 2008
  • This study used response surface methodology (RSM) in an effort to optimize the water extraction conditions of Hypsizigus marmoreus in order to increase cytotoxicity activity of the extract. A central composite design was applied to investigate the effects of independent variables, which included the extraction temperature ($X_1$), extraction time ($X_2$), the ratio of solvent to sample ($X_3$) on dependent variables of the extracts, including extraction yield ($Y_1$) and protein content ($Y_2$). The estimated optimal conditions were as follows: $51.3^{\circ}C$ extraction temperature, 8.2 hrs extraction time, and 46.7 mL/g of solvent per sample. The extract (CE) was extracted at optimal condition and crude polysaccharides (CPS) were obtained from CE by ethanol precipitation, dialysis, and freeze drying. Neutral (NPS) and acidic (APS) fraction of polysaccharides were seperated from CPS by ion chromatography. The growth inhibitory effects of the APS (0.5 mg/mL) on AGS human cancer cells were 73.97%. CPS showed the highest growth inhibitory effects on HepG2 human cancer cell at 0.5 mg/mL. However all fraction polysaccharides from Hypsizigus marmoreus showed lower than 20% growth inhibition on SW480 human cancer cell.

Determination of Optimized Operational Parameters for Photocatalytic Oxidation Reactors Using Factorial Design (요인분석법을 이용한 광촉매 산화반응조의 최적 운영인자 도출)

  • Hur, Joon-Moo;Cheon, Seung-Yul;Rhee, In-Hyoung;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of this study is to determine the optimum conditions of operational parameters using factorial design for phenol degradation in photocatalytic oxidation reactors. Factorial design is widely used to select the dominant factors and their ranges in experiments involving several factors where it is necessary to study the effect of factors on a response. The effects of initial concentration of phenol, intensity of UV light and surface area of catalyst on phenol degradation were investigated. Two levels were considered in this study so that the experiment was a $2^3$ factorial design with three replicates. The experimental results show that an increase in initial concentration of phenol from 5 to 50 mg/L intensity of UV light from 5,000 to $20,000\;{\mu}W/cm^2$, and surface area of catalyst from 740 to $2,105\;cm^2$ enhanced the phenol degradation rate by an average of 1.86, 1.79, and 2.10 mg/L hr, respectively. Interaction effects do not appear to be as large on the phenol degradation rate as the main effects of single factors. The optimum working condition for photocatalytic oxidation reactors, despite the higher three factors the better removal rate, is the highest surface area or catalyst.

Radiation Resistance and Fabrication of Carbon Fiber Reinforced Thermoplastic Composites by Electropolymerization (전기중합법에 의한 열가소성 수지 탄소섬유 강화 복합재료의 제조와 내방사선성)

  • Park, Minho;Kim, Minyoung;Kim, Wonho;Cho, Wonjei
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.489-501
    • /
    • 1997
  • Electropolymerization of 2-vinylnaphthalene (2-VN) and methylmethacrylate (MMA) with high radiation resistance property was conducted on the surfaces of carbon fibers by using a nonaqueous solution of comonomers dissolved in N,N-dimethylformamide containing sodium nitrate as a supporting electrolyte. The fabrication of carbon fiber/2-VN/MMA prepreg was performed electrochemically in 1:1 comonomer solution. Electropolymerization was conduced by changing the current density, initial comonomer concentration, and reaction time. The weight gain on the surface of the carbon fibers was measured by thermogravimetric analyser (TGA). The highest weight gain of 50 wt% was obtained at 600mA/g~800mA/g current density range, but the weight gain was rapidly decreased above 800mA/g current density. The weight gain was increased with the concentration of comonomer, while the concentration of electrolyte had almost no effect on the weight gain. At 300mA/g current density, weight gain rate was increased abruptly to the initial 30 minutes of reaction time. After that the rate was decreased due to the generation of gas bubbles. In order to check the effect of coated polymers on the radiation resistance, morphology changes before and after $\gamma$-ray irradiation was investigated for the composites.

  • PDF

Study on the Improvement of BGA Solderability in Electroless Nickel/Gold Deposit (무전해 Ni/Au 도금에서의 BGA Solderability 특성 개선에 관한 연구)

  • 민재상;황영호;조일제
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.55-62
    • /
    • 2001
  • With a spread of BGA, CSP and fine pitch devices, the need of flatter surface finish in bare board is becoming more critical in solderability. The electroless Ni/Au plating has a solution of these needs and also has being spread to apply to surface finish for bare board in many electronic goods. But, the electroless Ni/Au plating had several issues such as Ni oxidation and phosphorous contents. Before this study, we studied on the effect of BGA solderability in electroless Ni/Au plating and chose some major factors such as the oxidation property of NiP plating and warpage of board. Firstly, we made test board with various plating conditions and improved the plating property through the improvement of NiP oxidation reducing P content. Also, we minimized the warpage of board with the improvement of inner layer structure and the analysis of warpage. For the evaluation of solderability, we analyzed the warpage of board and the plating property after mounting BGA on the board with optimizing conditions. The solder joint of BGA is investigated by SEM(Scanning Electronic Microscope) and OM(Optical Microscope). The composition of joint is used by EDS(Energy Dispersive Spectroscopy). We analyzed the fracture strength and mode by ball shear teser.

  • PDF

Modeling and Optimization of Dough Properties Using Response Surface Design (반응표면분석법을 이용한 반죽물성의 모델링 및 최적화)

  • Lee, Kooyeon;Choi, Gwkang Seok;Kim, Tae Woo;Cho, Kwan Hyung;Kang, Dongjin;Kim, Sung Tae;Jang, Dong-Jin
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.132-137
    • /
    • 2017
  • The purpose of this study was to optimize dough properties using response surface methodology (RSM) and to demonstrate the performances of dough prepared under optimized conditions. Dough mixed with yeast, margarine, salt, sugar and wheat flour was prepared by fermentation process. Hardness, cohesiveness and springiness of dough were selected as critical quality attributes. The critical formulations (yeast and water) and process (fermentation time) variables were selected as critical input variables based on preliminary experiment. Box-Behnken design (BBD) was used as RSM. As a result, the quardratic, the squared and the linear model respectively provided the most appropriate fit ($R^2$>90) and had no significant lack of fit (p>0.05) on critical quality attributes (hardness, cohesiveness and springiness). The accurate prediction of dough characteristics was possible from the selected models. It was confirmed by validation that a good correlation was obtained between the actual and predicted values. In conclusion, the methodologies using RSM in this study might be applicable to the optimization of fermented foods containing various wheat flour and yeast.