• Title/Summary/Keyword: 최적 선형 요소

Search Result 186, Processing Time 0.029 seconds

A Fuzzy AHP based Decision-making Model for Selecting a Telecommunication Company (Fuzzy AHP 기반의 이동통신사 선정을 위한 의사결정모델)

  • Seo, Kwang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1060-1064
    • /
    • 2009
  • This paper proposes a fuzzy AHP based decision-making model to select a telecommunication company and the target of the proposed model is university students in the capital area. When customers select a telecommunication company, they have difficulty in decision-making because there are many competitive and complementary factors of telecommunication companies. To select a best telecommunication company, customers need to consider a number of different quantitative and qualitative factors such as fare, various services, additional function, etc. In this study, we suggest a fuzzy AHP based decision-making model to select a telecommunication company considering various quantitative and qualitative factors. Especially, fuzzy theory is applied to deal with the unclear or ambiguous problems, and a linear normalization model is developed to convert the value of quantitative factors to fuzzy number. A empirical example which is the target of the university students in the capital area shows the feasibility of the proposed model and it can help customers to make better decision-making for their benefits.

Study on design of the composite torque link for a landing gear system of a helicopter (헬리콥터 착륙장치를 위한 복합재 토크링크의 설계에 대한 연구)

  • Kim, Jin-Bong;Um, Moon-Kwang;Lee, Sang-Yong;Kim, Tae-Uk;Shin, Jeong-Woo
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.30-36
    • /
    • 2009
  • In this paper, we propose the design method for the composite torque link of a landing gear for a helicopter. The composite torque link has to be light weighted and very stiff to keep the shock absorber in the landing gear of helicopter. The configuration and structural shape has to be designed in consideration of the RTM (Resin Transfer Molding) manufacturing process which is adopted to minimize the manufacturing cost. The mechanical properties are obtained through the coupon tests with the specimens made by the same manufacturing process for the composite structure. The optimal design process was performed through iterative modifications of the models which were verified by stress analysis using FEM. The composite torque link has lug-shaped parts and is very thick, so 3D Layered solid elements of ABAQUS were used to get the stress field including the stress components in thickness direction and non-linear static analysis using contact B.C. of rigid-deform condition was used to get the optimal design.

Stiffness Analysis of External Fixation System with System Configuration Parameters (시스템 구성 인자를 고려한 외고정장치 시스템의 강성 해석)

  • Kim Yoon Hyuk;Lee Hyun Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.531-536
    • /
    • 2004
  • In fracture treatment with external fixators, the inter-fragmentary movements at the fracture site affect the fracture healing process, and these movements are highly related to the stiffness of external fixation systems. Therefore, in order to provide the optimal fracture healing at the fracture site, it is essential to understand the relationship between the stiffness and the system configurations in external fixation system. In this study we investigated the influences of system configuration parameters on the stiffness in the finite element analysis of an external fixation system of a long bone. The system alignment, the geometric and the material non-linearity of the pin, the joint stiffness and the callus formation were considered in the finite element model. In the first, the system stiffness of the developed finite element model was compared with the experiment data for model validation. The consideration of the joint stiffness and nonlinearity of the model improved the system stiffness results. The joint stiffness, the non-alignment of the system decreased the system stiffness while the callus formation increased the system stiffness. The present results provided the biomechanical basis of rational guidelines for design improvements of external fixators and pre-op. planning to maximize the system stiffness in fracture surgery.

An Investigation on the Optimal Ship Size for Chemical Tankers by Main Shipping Routes (케미컬 탱커선 운항노선별 최적선형에 관한 연구)

  • Kim, Jae-Ho;Kim, Taek-Won;Woo, Su-Han
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.439-450
    • /
    • 2015
  • This study objects to find characteristics in chemical tanker markets and to determine optimal chemical tanker size using a total shipping cost in main trading route of asia chemical tankers .Precedent studies of determination of the optimal ship size and case studies about chemical tankers was carried out and tried to introduce a cost model which is applicable to chemical tanker. This study is dependant on numerical analysis and involves scenario analysis to minimize sensitivity of results. This analysis shows as follows. First, 12,000DWT tanker is an optimal size on the 'Far East-Middle East' services, 9,000DWT tanker is a most competitive on the 'Far East-South East Asia' services and 3,000DWT tanker is a most economic size on the 'Inner Far East' services at average market situation. Second, the bigger size of chemical tanker, the more competitive advantage the tanker will obtain when bunker fuel prices rise. Small size ship gets more competitive during bunker prices down. Third, market fluctuation of time charter rate for chemical tanker is less than 20% against its average time charter hire which means less volatile. And tanker's competitiveness per each size is remained mostly same when time charterer rates rise at same proportion. Fourth, bigger size chemical tankers have cost advantages when tanker's quantity of each part cargo increase. And small-sized tanks are more competitive when part cargo scales decrease. For the last, ship's port stay strongly influences on the determination of the optical tanker size. When vessel has shorter port stay, bigger-sized tanker will be more competitive and even can be competitive if applies in short voyage as well.

An Implementation of The Position Pattern Generating Algorithm with Minimal Locomotion Time for Single-Axis Linear Machine Drive System (단축 선형 전동기 구동을 위한 최단시간 이동 방식의 위치 패턴 발생 알고리즘의 구현)

  • Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.221-233
    • /
    • 2007
  • In this paper, a simple but effective position profile generation algorithm for single axis high dynamic linear machine drive system is presented. In the recent industrial application fields like as LCD/PDP and semiconductor factory, requirements for the high performance positioning system with optimal position profile generator are highly increased to reduce the overall processing time. There might be various solutions for position profile generating algorithm according to the application type. A square-wave Impact quantity(Jerk) based algorithm with minimal locomotion time is argued in this paper to minimize the total time of one movement under some specific constrains such as maximum speed limit and maximum acceleration limit. In order to reduce the calculation efforts and satisfy the minimal locomotion time condition, the time variants representing each profile sector and a simple condition comparison algorithm are adopted. Also, the actual implementation method for profile generation algorithm and it's real performance results are presented through commercial linear machine drive system.

A Study on Beam-to-Column Connections with Plate Type Energy Absorption System (플레이트형 에너지 흡수장치를 가지는 기둥-보 접합부에 관한 연구)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.103-114
    • /
    • 2013
  • Recently, there is a growing interest on sustainable connection system that makes it possible to reuse of main structural members by concentrating most of the damage in the frame caused by strong horizontal force, such as earthquake, to damper. In this study proposed a new type of damage-controlled connection system applying these concepts and analysed the major structural performance of the proposed system through the full-scale cyclic loading test and nonlinear finite element analyses. According to the result, it derived the optimal damper/beam strength ratio that minimize the damage of main members and satisfy at least the fully plastic moment of the beam. And it was to verify the possibility of applying as seismic connection details.

Simultaneous Aero-Structural Design of HALE Aircraft Wing using Multi-Objective Optimization (고고도 장기체공 항공기 날개의 다목적 최적화를 이용한 공력-구조 동시 설계)

  • Kim, Jeong-Hwa;Jun, Sang-Ook;Hur, Doe-Young;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • In this study, simultaneous aero-structural design was performed for HALE aircraft wing. The span and the shape of main spar were considered as design variables. To maximize aerodynamic performance and to minimize weight, multi-objective optimization was used. Nonlinear static aeroelastic analysis was performed to compute large deflection of wing. Design of experiment and response surface method were used to reduce computation cost in the design process. Also, aerodynamic performances of deformed wing and rigid wing were compared.

Optimum Shape Design of Single-Sided Linear Induction Motors Using Response Surface Methodology and Finite Element Method (반응 표면법과 유한 요소법을 이용한 편측식 선형 유도 전동기의 형상 최적 설계)

  • Song, Han-Sang;Lee, Jung-Ho;Lee, Seung-Chul;Lee, Byeong-Hwa;Kim, Kyu-Seob;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1057-1058
    • /
    • 2011
  • This paper deals with finding the optimal ratio of height and length of Single-Sided Linear Induction Motors (SLIM) using Finite Element Method (FEM) for magnetic field analysis coupled with optimal design methodology. For effective analysis, FEM is conducted in time harmonic field which provides steady state performance with the fundamental components of voltage and current. The ratio of height to length providing the required output power is obtained by Response Surface Methodology (RSM) and optimal values are presented by the variation in output power. When output power is small, the ratio is high and as the power increases, the ratio shows a converged value. Considering the general application of linear motors, using a small ratio can be limiting, however, the shape ratio for maximum thrust can be identified.

  • PDF

A study on Optimization of the Design Variables of Linear Motor Using Genetic Algorithm (유전알고리즘을 이용한 리니어모터의 설계변수 최적화에 관한 연구)

  • Joo, Sang-Hyun;Jung, Jae-Han;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.110-117
    • /
    • 2002
  • This paper proposes a optimization of the design variables of linear motor for the improvement of thrust. Especially, this paper treats the shoe, which can be good to flow of a magnetic flux in linear motor. Firstly, this paper uses a space harmonic analysis method(SHAM) based on Fourier series, for analyzing the characteristics of core type linear motor, including slot structure and shoe. And compare the magnetic flux densities of linear motor at air gap with the results of the SHAM and the Finite Element Method(FEM). Secondly, this paper uses a genetic algorithm, which is good to find the global solutions. The design variables are the pole pitch of magnet, the pitch of slot, the height of slot, the width of shoe and the width of magnet. The maximum thrust with optimum design variables is about 247 N which is improved about 16%.

Pre- and Post-Processors of Ensemble Streamflow Prediction System (앙상블 유량예측 시스템의 사전 및 사후처리에 관한 연구)

  • Kang, Tae-Ho;Kim, Young-Oh;Hong, Il-Pyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.264-268
    • /
    • 2008
  • 미래 발생 가능한 수문 및 기상현상의 예측과정은 지식의 부족과 자연현상의 다양성으로 인해 불확실성을 포함하게 된다. 하지만 많은 예측들은 아직까지 확정적으로 제공되고 있으며, 결과적으로 예측결과의 불확실성 정도를 제공하지 못하고 있다. 앙상블 유량예측(ESP, Ensemble Streamflow Prediction)은 이러한 불확실성을 고려하여 수자원시스템의 의사결정에 있어 중요한 요소 중 하나인 유량예측을 수행할 수 있는 방법이다. 하지만 ESP의 결과는 기상자료, 유역 초기조건, 수문모형의 매개변수, 단순화된 수문모형에 의해 비교적 큰 불확실성을 포함하게 되며, 따라서 실제적인 현업에서의 사용을 위해서는 불확실성 정도를 줄이기 위한 사전 및 사후처리 과정이 요구된다. 본 연구에서는 국내에서 활용 가능한 기후 예보자료를 사용하여 앙상블 유량예측에 적용할 수 있는 사전처리 방안들을 검토하고, 국내에서 사후처리를 위해 적용되었던 최적선형 보정기법에 더해 다양한 기법들을 강우유출모형인 TANK모형의 모의결과 보정에 적용하였다. 사전 및 사후처리를 적용한 결과 기상자료와 유량예측과정에 존재하는 불확실성을 저감시키는 것이 가능하였다. 특히 사전 및 사후 처리가 동시에 적용되었을 경우 그 향상 정도가 단순히 각각의 방법에 의한 향상 정도를 합한 것보다 높게 나타날 수 있음이 확인되었다. 사전 및 사후처리를 동시에 적용한 경우 이수기에는 RPS(Ranked Probability Score) 평가방법 내에서 54%를, 홍수기에는 8%를 향상시키는 것이 가능하였다.

  • PDF