• Title/Summary/Keyword: 최적 변수 선택

Search Result 352, Processing Time 0.031 seconds

A Simulation-based Optimization Approach for the Selection of Design Factors (설계 변수 선택을 위한 시뮬레이션 기반 최적화)

  • Um, In-Sup;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.45-54
    • /
    • 2007
  • In this article, we propose a different modeling approach, which aims at the simulation optimization so as to meet the design specification. Generally, Multi objective optimization problem is formulated by dependent factors as objective functions and independent factors as constraints. However, this paper presents the critical(dependent) factors as objective function and design(independent) factors as constraints for the selection of design factors directly. The objective function is normalized far the generalization of design factors while the constraints are composed of the simulation-based regression metamodels fer the critical factors and design factor's domain. Then the effective and fast solution procedure based on the pareto optimal solution set is proposed. This paper provides a comprehensive framework for the system design using the simulation and metamodels. Therefore, the method developed for this research can be adopted for other enhancements in different but comparable situations.

  • PDF

Optimization of GA-based Advanced Self-Organizing Fuzzy Polynomial Neural Networks (GA 기반 고급 자기구성 퍼지 다항식 뉴럴 네트워크의 최적화)

  • 박호성;박건준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.288-291
    • /
    • 2004
  • 기존의 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. SOFPNN의 구조는 퍼지 다항식 뉴론(FPN)들로 구성되어 있으며, 층이 진행하는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. 그러나, 노드의 입력변수의 수와 규칙 후반부 다항식 차수 그리고 입력변수는 설계자의 경험 또는 반복적인 학습을 통해 선호된 네트워크 구조를 선택하였으나, 최적의 네트워크 구조를 구축하는데는 어려옴이 내재되어 있었다. 본 논문에서는 자기구성 퍼지 다항식 뉴럴네트워크(Self-Organizing Fuzzy Polynomial Neural Networks: SOFPNN)을 최적화시키기 위해 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 따라서 모델 구축에 있어서 유연성과 정확성을 가지며 객관적이고 좀 더 정확한 예측 능력을 가진 SOFPNN 모델 구조를 구축할 수가 있다.

  • PDF

깁스표본기법을 이용한 설명변수 선택문제에서 사전분포의 설정-선형회귀모형을 중심으로-

  • 박종선;남궁평;한숙영
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.333-343
    • /
    • 1997
  • 선형회귀분석에서 변수의 선택문제는 최적의 모형을 찾는데 아주 중요한 부분을 차지한다. George와 McCulloch(1993)는 계층적 베이즈 모형과 깁스표본법을 이용하여 선형회귀모형에서 변수를 선택하는 문제를 고려하였다. 이 논문에서는 George와 McCulloch의 모형을 바탕으로 각각의 설명변수가 모형에 포함될 사전확률을 객관적인 기준에 의하여 결정하는 문제를 고려하여 보았다.

  • PDF

A Bayes Criterion for Selecting Variables in MDA (MDA에서 판별변수 선택을 위한 베이즈 기준)

  • 김혜중;유희경
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.435-449
    • /
    • 1998
  • In this article we have introduced a Bayes criterion for the variable selection in multiple discriminant analysis (MDA). The criterion is a default Bayes factor for the comparision of homo/heteroscadasticity of the multivariate normal means. The default Bayes factor is obtained from a development of the imaginary training sample method introduced by Spiegelhalter and Smith (1982). Based an the criterion, we also provided a test for additional discrimination in MDA. The advantage of the criterion is that it is not only applicable for the optimal subset selection method but for the stepwise method. More over, the criterion can be reduced to that for two-group discriminant analysis. Thus the criterion can be regarded as an unified alternative to variable selection criteria suggested by various sampling theory approaches. To illustrate the performance of the criterion, a numerical study has bean done via Monte Carlo experiment.

  • PDF

Variable Selection in PLS Regression with Penalty Function (벌점함수를 이용한 부분최소제곱 회귀모형에서의 변수선택)

  • Park, Chong-Sun;Moon, Guy-Jong
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.633-642
    • /
    • 2008
  • Variable selection algorithm for partial least square regression using penalty function is proposed. We use the fact that usual partial least square regression problem can be expressed as a maximization problem with appropriate constraints and we will add penalty function to this maximization problem. Then simulated annealing algorithm can be used in searching for optimal solutions of above maximization problem with penalty functions added. The HARD penalty function would be suggested as the best in several aspects. Illustrations with real and simulated examples are provided.

Shape Optimization of a 10/8 Switched Reluctance Motor Using Response Surface Methodology (반응표면기법을 이용한 5상 10/8 스위치드리럭턴스 모터의 협상최적설계)

  • Kim, Yong-Dae;Lee, Dae-Ok;Park, Kyi-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.21-23
    • /
    • 2003
  • 본 연구에서는 반응표면기법을 이용하여 5상, 10/8 스위치드 리럭턴스 모터의 최적설계를 수행하였다. 반응표면 기법은 여러 개의 독립적인 설계변수가 출력 함수에 복합적인 작용을 하고 있을 때, 설계변수의 변화에 대한 출력함수의 변화를 추정하는 통계적인 분석방법이다. 여기서는, 모터 형상을 결정하는 모든 기하학적인 치수들을 변수로 선택하였고, D-Optimal 기법을 이용하여 실험 점들을 선택하였다. 각각의 실험점들에 대해서 FEM 해석을 수행하였고, 평균토크와 권선면적을 만족하는 최소부피의 모터를 설계하였다. 반응표면 모델을 이용하여 최적설계를 수행하였고, 각도와 전류에 따른 토크 프로파일과 인덕턴스 프로파일을 얻었다. 이를 바탕으로 동적 거동을 예상해 보았다. 반응표면기법을 이용한 최적설계에서는 global optimum을 보장할 수 있으며, 최적설계에 소요되는 시간을 줄일 수 있다.

  • PDF

The Initial Value Setting-Up Method for Extending the Range of the Optimal Step Parameter under LMS Algorithm (LMS 알고리즘에서 최적 매개변수의 선택 폭 확대를 위한 초기치의 설정방법)

  • Cho, Ki-Ryang;An, Hyuk;Choo, Byoung-Yoon;Lee, Chun-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.284-292
    • /
    • 2003
  • In this paper, we carried out the numerical examination of the initial value setting-up method to extend the range of optimal step parameter in a adaptive system which is controlled by LMS algorithm. For initial value setting-up methods, the general method which select the initial value randomly and the other method which applies the approximate value obtained from the direct method to initial value, were used. And then, we compared to the ranges of step parameter setting, the convergence speeds of mean-square-error, and the stabilities during the convergence process when the initial values were applied to the optimal directivity synthesis problem. According to the numerical simulation results, the initial value setting-up method by means of the direct method provides wider range for the step parameter, more efficient capability for convergence and stability, and more error correction ability than the general method.

Parameter Estimation and Validation of a Multinomial Logit Model for the Prediction of Mode Shift as a Result of TDM Schemes in Seoul (교통수요관리정책의 효과분석을 위한 다항로짓모형의 적용 - 서울시 사례 -)

  • 황기연;김익기;이우철
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.53-64
    • /
    • 1998
  • 본 연구의 목적은 '96년말 서울시에서 실시한 가구통행조사를 이용하여 서울시 수단선택모형을 구축하고 그 예측결과를 남산 혼잡통행료 전후저사자료와 비교하여 보다 구체적으로 그 정확성을 검증한 뒤 향후 서울시 교통수요관리 방안의 시행에 따른 수단선택변화 예측의 기본 모형으로 활용하는데 있다. 5가지의 대안모형의 분석결과 통행비용변수(승용차의 경유 주차요금포함)와 총통행시간변수(OVTT와 IVTT의 합), 승용차, 지하철, 택시상수로 구성된 모형이 최적모형으로 분석되었다. 이모형에 의한 시간가치는 9,395원, 승용차의 비용탄력성은-0.6767로서 기존 연구결과의 범위 내에 속한 것으로 나타났다. 최적모형을 이용하여 승용차통행비용이 증가한 경우를 모사분석결과 남산1,3호 터널 혼잡통행료 징수효과와 유사하게 승용차 분담율이 13% 가까이 감소한 것으로 나타나서 모형의 현실적합성도 비교적 높은 것으로 판명되었다. 향후 본 연구에서 선정된 최적수단선택모형을 통행배정모형과 결합하여 다양한 교통수요관리 방안에 따른 효과를 예측하는데 활용하면 서울과 같은 대도시의 단기적 교통관리의 수준을 한 단계 높이는데 기여할 것으로 판단된다.

  • PDF

A Study on Optimal Identification of Fuzzy Polynomial Neural Networks Model Using Genetic Algorithms (유전자 알고리즘을 이용한 FPNN 모델의 최적 동정에 관한 연구)

  • 이인태;박호성;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.429-432
    • /
    • 2004
  • 본 논문은 기존의 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks ; FPNN) 모델을 이용하여 비선형성 데이터에 대한 추론을 제안한다. 복잡한 비선형 시스템의 모델동정을 위하여 생성된 GMDH 방법에 기초한 FPNN의 각 노드는 퍼지 규칙을 기반으로 구축되었으며, 층이 진행되는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. FPNN 각각의 활성노드를 퍼지다항식 뉴론(Fuzzy Polynomial Neuron ; FPN)이라고 표현한다. FPNN의 후반부 구조는 입출력 변수 사이 의 간략과 회귀다항식 (1차, 2차, 변형된 2차식) 함수에 의해 구현된다. 규칙의 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 또한 유전자 알고리즘을 사용하여 각노드의 부분표현식을 구성하는 입력변수의 수, 입력변수와 차수의 선택 동조를 통하여 최적의 Genetic Algorithms(GAs)을 이용한 FPNN모델을 설계하는 것이 유용하고 효과적임을 보인다.

  • PDF

Genetically Optimized Self-Organizing Fuzzy-Set based Polynomial Neural Networks (유전론적 최적 자기구성 퍼지 집합 기반 다항식 뉴럴네트워크)

  • 노석범;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.303-306
    • /
    • 2004
  • 기존의 퍼지 규칙에 기반을 둔 퍼지 다항식 뉴론(FPN)들로 구성된 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 그러나, SOFPNN의 기본 뉴론인 퍼지 규칙 기반 다항식 뉴론의 경우 입력변수가 많아질수록 규칙수가 기하급수적으로 증가한다는 단점을 가지고 있으나 본 노문에서 제안한 퍼지 집합 기반 다항식 뉴론(FSPN)의 규칙수는 입력 변수들이 서로 독립적이므로 규칙의 증가가 퍼지 규칙 기반 다항식 뉴런보다는 적다는 장점을 가지고 있다. 이러한 특성을 기반으로 기존의 SOFPNN의 노드에 퍼지 규칙 기반 다항식 뉴런 대신에 퍼지 집합 기반 다항식 뉴런을 적용한 SOFPNN을 제안하여 기존의 SOFPNN과 성능을 비교하였다. 최적의 자기 구성 퍼지 집합기반 다항식 뉴럴 네트워크를 구축하기 위하여 SOFPNN에서처럼 유전자 알고리즘을 이용하여 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하였다.

  • PDF