• Title/Summary/Keyword: 최적 민감도 해석

Search Result 295, Processing Time 0.031 seconds

A Comparative Study on Surrogate Models and Sensitivity Analysis for Structure Design of Automatic Salt Collector Using Orthogonal Array Experiment (직교배열실험을 이용한 자동채염기 구조설계의 민감도해석과 대리모델 비교 연구)

  • Song, Chang Yong;Lee, Dong-Jun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.138-146
    • /
    • 2020
  • The paper deals with comparative study of characteristics of surrogate models and sensitivity evaluation using design of experiments in order to enhance and analysis the structure design of an automatic salt collector under various design load conditions. Orthogonal array design based on numerical analysis was used for the design of experiments. The thickness sizing variables of main structure member were considered the design factors, and the output responses were selected from the strength performances as well as the weight. The quantitative effects on responses for each design factor were evaluated from the orthogonal array experiment. Optimum design case was also identified to improve the strength performances with weight minimization. Using the orthogonal array experiment. various surrogate models such as response surface model, Kriging model, and Chebyshev orthogonal polynomial were generated. The orthogonal array experiment results were validated by the surrogate modeling results. The most suitable surrogate model was the response surface model for the exploration of design space of the automatic salt collector.

A study on the fast prediction of the fragmentation zone using artificial neural network when a blasting occurs around a tunnel (인공신경망을 이용한 터널 주변 폭파 시 파쇄영역의 빠른 예측에 관한 연구)

  • You, Kwang-Ho;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.81-95
    • /
    • 2013
  • When collapse occurs due to explosion near a tunnel, fragmentation zone should be comprehended quickly to recover the function of the tunnel itself. In this study, a method to interpret explosion behavior and predict the fragmentation zone fast. For this purpose, the various 3D-meshes were generated using SolidWorks and explosion analyses were carried out using AUTODYN. The influence of explosion variables such as source location on fragmentation volume were examined by performing sensitivity analyses. Also, a training database for an artificial neural network analysis had been established and the optimal training model was selected, and the predicted results for fragmentation volume and radius were verified. The suggested method had demonstrated that it could be effective for the fast prediction of fragmentation zone.

An Evaluation of the Second-order Approximation Method for Engineering Optimization (최적설계시 이차근사법의 수치성능 평가에 관한 연구)

  • 박영선;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.236-247
    • /
    • 1992
  • Optimization has been developed to minimize the cost function while satisfying constraints. Nonlinear Programming method is used as a tool for the optimization. Usually, cost and constraint function calculations are required in the engineering applications, but those calculations are extremely expensive. Especially, the function and sensitivity analyses cause a bottleneck in structural optimization which utilizes the Finite Element Method. Also, when the functions are quite noisy, the informations do not carry out proper role in the optimization process. An algorithm called "Second-order Approximation Method" has been proposed to overcome the difficulties recently. The cost and constraint functions are approximated by the second-order Taylor series expansion on a nominal points in the algorithm. An optimal design problem is defined with the approximated functions and the approximated problem is solved by a nonlinear programming numerical algorithm. The solution is included in a candidate point set which is evaluated for a new nominal point. Since the functions are approximated only by the function values, sensitivity informations are not needed. One-dimensional line search is unnecessary due to the fact that the nonlinear algorithm handles the approximated functions. In this research, the method is analyzed and the performance is evaluated. Several mathematical problems are created and some standard engineering problems are selected for the evaluation. Through numerical results, applicabilities of the algorithm to large scale and complex problems are presented.presented.

A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment (직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구)

  • Kim, Hun-Gwan;Song, Chang Yong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.187-196
    • /
    • 2021
  • The paper deals with comparative study for characteristics of approximation of design space according to various approximate models and sensitivity analysis using orthogonal array experiments in structure design of active type DSF which was developed for float-over installation of offshore plant. This study aims to propose the orthogonal array experiments based design methodology which is able to efficiently explore an optimum design case and to generate the accurate approximate model. Thickness sizes of main structure member were applied to the design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experiment. Best design case was also identified to improve the structure design with weight minimization. From the orthogonal array experiment results, various approximate models such as response surface model, Kriging model, Chebyshev orthogonal polynomial model, and radial basis function based neural network model were generated. The experiment results from orthogonal array method were validated by the approximate modeling results. It was found that the radial basis function based neural network model among the approximate models was able to approximate the design space of the active type DSF with the highest accuracy.

Design Sensitivity Analysis and Topology Optimization of Piezoelectric Crystal Resonators (압전 수정진동자의 설계민감도 해석과 위상 최적설계)

  • Ha Youn-Doh;Cho Seon-Ho;Jung Sang-Sub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.335-342
    • /
    • 2005
  • Using higher order Mindlin plates and piezoelectric materials, eigenvalue problems are considered. Since piezoelectric crystal resonators produce a proper amount of electric signal for a thickness-shear frequency, the objective is to decouple the thickness-shear mode from the others. Design variables are the bulk material densities corresponding to the mass of masking plates for electrodes. The design sensitivity expressions for the thickness-shear frequency and mode shape vector are derived using direct differentiation method(DDM). Using the developed design sensitivity analysis (DSA) method, we formulate a topology optimization problem whose objective function is to maximize the thickness-shear component of strain energy density at the thickness-shear mode. Constraints are the allowable volume and area of masking plate. Numerical examples show that the optimal design yields an improved mode shape and thickness-shear energy.

  • PDF

Optimum Design of Transverse Flux LInear Motor for Transfer of LCD Glass Pannel Using Design of Experiment (실험계획법을 이용한 LCD 원판 Glass 이송용 횡자속 선형전동기 최적설계)

  • Hong, Do-Kwan;Woo, Byung-Chul;Lee, Ji-Young;Chung, Shi-Uk;Kang, Do-Hyun;Lee, In-Jae;Cho, Chang-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1135-1136
    • /
    • 2011
  • 본 논문은 LCD 원판 Glass 이송용 4,000[N]급 영구자석 여자 횡자속 선형전동기를 설계하고 해석을 통해 성능을 검토하였다. 실험계획법을 활용하여 횡자속 선형전동기의 형상을 이루는 설계변수들이 추력과 추력리플에 미치는 평균분석을 통해서 민감도분석을 수행하였다. 본 연구에서 개발된 횡자속 선형전동기 적용 추진모듈은 LCD 제조 분야의 원판 Glass 이송용으로 선형이송 시스템에 적용하고자 한다.

  • PDF

Optimal Design of Vehicle Passenger Compartment (차량승객실의 최적설계)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.60-66
    • /
    • 1999
  • This study is to develop design sensitivity analysis method based on continuum theory for the actual buckling load of vehicle passenger compartment with respect to sizing design variables. For nonlinear structural analysis, both geometric and material nonlinear effects are considered. The total Lagrangian formulation for incremental equilibrium analysis and one-point linear eigenvalue problem for buckling analysis are utilized. Numerical methods are presented to evaluate design sensitivity expressions, using structural analysis results from FEM code. Optical design of vehicle passenger compartment with buckling constraint solved using Gradient projection method.

  • PDF

Shape Design Sensitivity Analysis and Optimization of Axisymmetric Shell Structures (축대칭 쉘구조물의 형상 설계민감도 해석 및 최적설계)

  • 김인용;곽병만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.98-105
    • /
    • 1993
  • A method for shape design sensitivity analysis for axisymmetric shells of general shapes is developed. The basic approach is to divide the structures into many segments. For each of the segments, the formula for a shallow arch or shell can be applied and the results assembled. To interconnect those segments, the existing sensitivity formula, obtained for a variation only in the direction perpendicular to the plane on which the structure is mapped, has been extended to include a variation normal to the middle surface. The method follows the adjoint variable approach based on the material derivative concept as established in the literature. Numerical examples are taken to illustrate the method and the applicability to practical design problems.

  • PDF

Structure Design Optimization of Small Class Forklift for Idle Vibration Reduction (소형 지게차의 Idle 진동 저감을 위한 차체 구조 최적 설계)

  • Lee, Wontae;Kim, Younghyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.660-664
    • /
    • 2014
  • A diesel forklift truck under 3-ton class has disadvantages in the vibration transmission path. Because the weight ratio of body structure to powertrain which is source of excitation force is lower th an a mid-class forklift. In addition, the torsional and bending vibration mode frequencies of body structure are within the engine excitation frequency range, then high idle vibration generated by resonance. In this paper vehicle body structure design and optimization technique considering idle vibration reduction are presented. Design sensitivity analysis is applied to search the sensitive of design parameters in body structure. The design parameters such as thickness and pillar cross section were optimized to increase the torsional and bending vibration mode frequencies.

  • PDF

Shape Design Sensitivity Analysis and Optimization of General Plane Arch Structures (일반 평면 아치 구조물의 형상설계민감도 해석 및 최적설계)

  • 최주호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.238-245
    • /
    • 2000
  • A general formulation for shape design sensitivity analysis over a plane arch structure is developed based on a variational formulation of curved beam in linear elasticity. Sensitivity formula is derived using the material derivative concept and adjoint variable method for the stress defined at a local segment. Obtained sensitivity expression, which can be computed by simple algebraic manipulation of the solution variables, is well suited for numerical implementation since it does not involve numerical differentiation. Due to the complete description for the shape and its variation of the arch, the formulation can manage more complex design problems with ease and gives better optimum design than before. Several examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. Shape optimization is also conducted with two design problems to illustrate the excellent applicability.

  • PDF