• Title/Summary/Keyword: 최적 강화응집 주입율

Search Result 3, Processing Time 0.016 seconds

Characteristics of Natural Organic Matter (NOM) on Han River and Criterion of Enhanced Coagulation (한강원수 자연유기물의 특성분석 및 강화응집 기준 평가)

  • Jeong, Youngmi;Kweon, Jihyang;Lee, Sanghyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.653-661
    • /
    • 2007
  • The Disinfectants/Disinfection By-products (D/DBP) Rule proposed by the US Environmental Protection Agency requires the implementation of enhanced coagulation as a control strategy for natural organic matter (NOM) removal and as a means of limiting the formation of all DBPs, i.e., not just the trihalomethanes and haloacetica acids. To control DBP formation, several best available technologies (BATs) were determined for removal of DBPs and DBP precursors. The enhanced coagulation is one of the BATs for DBP precursors removal. Treatment facilities that achieve a specified percent removal of total organic carbon (TOC) prior to the application of a continuous disinfectant or that achieve a residual TOC concentration < 2mg/L prior to the application of a continuous disinfectant are considered to be in compliance with enhanced coagulation. The enhanced coagulation was applied to raw water in Korea, the Han River. Raw water were examined and effects of different raw water qualities on enhanced coagulation were investigated. Three analyses were used for raw water characteristics, water quality measurement, molecular weight distributions, hydrophobic/hydrophilic fractionation. The Han River had the relatively low alkalinity and low organic carbon concentration. The results of molecular weight distributions showed significant portions of low molecular weight organics, which is very different from most water in USA. The alum doses for the required TOC removal guided from USEPA manual were quite low (i.e. 10~30 mg/L alum) for the water, probably due to the specific water quality of the Han River.

Phosphorus Removal from Advanced Wastewater Treatment Process Using PAC (PAC를 이용한 하수의 고도처리공정에서의 인 제거)

  • Park, Wan-Cheol;Lee, Mi-Ae;Sung, Il-Wha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • To meet the reinforced discharge standards, effect of coagulant PAC (Poly aluminium chloride, 10.4% as $Al_2O_3$) on phosphorous removal in advanced wastewater treatment process (a modified $A^2$/O). 15 mg/L of PAC determined by jar-test was added to influent of settling basin in a modified $A^2$/O consists of anaerobic, anoxic, and oxic chamber which contains Bio-clod and porous polyurethane media. Performance of PAC was tested by supernatant after settling. The removal efficiencies of BOD, COD, TP (total phosphorus) and SP (soluble phosphorus) on biological process with PAC were 96.1%, 88.8%, 97.0% and 98.6%, compared with those on biological process without PAC were 95.4%, 72.4%, 71.6% and 59.5% respectively. 18.4% of TP and 39.1% of SP removal efficiency was increased, although increase of BOD and COD removal rate was not significant. Only PAC addition to influent of settling basin in $A^2O$ process can help total phosphorus removal to 0.13 mg/L with following discharge standard.

Survey of Physicochemical Methods and Economic Analysis of Domestic Wastewater Treatment Plant for Advanced Treatment of Phosphorus Removal (총인 수질기준강화를 위한 국내 하수종말처리장의 물리화학적처리 특성조사 및 경제성 분석)

  • Park, Hye-Young;Park, Sang-Min;Lee, Ki-Cheol;Kwon, Oh-Sang;Yu, Soon-Ju;Kim, Shin-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.212-221
    • /
    • 2011
  • Wastewater treatment plants (WWTPs) are required to meet the reinforced discharge standards which are differentiated as 0.2, 0.3 and 0.5 mg-TP/L for the district I, II and III, respectively. Although most of WWTPs are operating advanced biological phosphorus removal system, the supplementary phosphorus treatment facility using chemical addition should be required almost at all WWTPs. Therefore, water quality data from several exemplary full-scale plants operating phosphorus treatment process were analyzed to evaluate the reliability of removal performance. Additionally, a series of jar tests were conducted to find optimal coagulants dose for phosphorus removal by chemical precipitation and to describe characteristics of the reaction and sludge production. Chemical costs and the increasing sludge volume in physicochemical phosphorus removal process were estimated based on the results of jar tests. The minimum coagulant (aluminium sulfate and poly aluminium chloride) doses to keep TP concentration below 0.5 and 0.2 mg/L were around 25 and 30 mg/L (as $Al_2O_3$), respectively, in the mixed liquor of activated sludge. In the tertiary treatment facility, relatively lower coagulant doses of 1/12~1/3 the minimum doses for activated sludge were required to achieve the same TP concentrations of 0.2~0.5 mg/L. Increase in suspended solids concentration due to chemical precipitates in mixed liquor was estimated at 10~11%, compared to the concentration without chemical addition. When coagulant was added into mixed liquor, chemical (aluminium sulfate) cost was estimated to be 4~10 times higher than in secondary effluent coagulation/separation process. Sludge production to be wasted was also 4~10 times higher than secondary effluent coagulation/separation process.