• Title/Summary/Keyword: 최적화 배치

Search Result 470, Processing Time 0.033 seconds

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

Path Algorithm for Maximum Tax-Relief in Maximum Profit Tax Problem of Multinational Corporation (다국적기업 최대이익 세금트리 문제의 최대 세금경감 경로 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.157-164
    • /
    • 2023
  • This paper suggests O(n2) polynomial time heuristic algorithm for corporate tax structure optimization problem that has been classified as NP-complete problem. The proposed algorithm constructs tax tree levels that the target holding company is located at root node of Level 1, and the tax code categories(Te) 1,4,3,2 are located in each level 2,3,4,5 sequentially. To find the maximum tax-relief path from source(S) to target(T), firstly we connect the minimum witholding tax rate minrw(u, v) arc of node u point of view for transfer the profit from u to v node. As a result we construct the spanning tree from all of the source nodes to a target node, and find the initial feasible solution. Nextly, we find the alternate path with minimum foreign tax rate minrfi(u, v) of v point of view. Finally we choose the minimum tax-relief path from of this two paths. The proposed heuristic algorithm performs better optimal results than linear programming and Tabu search method that is a kind of metaheuristic method.

Hierarchical Circuit Visualization for Large-Scale Quantum Computing (대규모 양자컴퓨팅 회로에 대한 계층적 시각화 기법)

  • Kim, JuHwan;Choi, Byung-Soo;Jo, Dongsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.611-613
    • /
    • 2021
  • Recently, research and development of quantum computers, which exceed the limits of classical computers, have been actively carried out in various fields. Quantum computers, which use quantum mechanics principles in a way different from the electrical signal processing of classical computers, have various quantum mechanical phenomena such as quantum superposition and quantum entanglement. It goes through a very complicated calculation process compared to the calculation of a classical computer for performing an operation using its characteristics. In order to utilize each element efficiently and accurately, it is necessary to visualize the data before driving the actual quantum computer and perform error verification, optimization, reliability, and verification. However, when visualizing all the data of various elements configured inside the quantum computer, it is difficult to intuitively grasp the necessary data, so it is necessary to visualize the data selectively. In this paper, we visualize the data of various elements that make up a quantum computer, and hierarchically visualize the internal circuit components of a quantum computer that are complicatedly configured so that the data can be observed and utilized intuitively.

  • PDF

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

A Study of Optimal Model for the Circuit Configuration of Korean Pulsatile Extracorporeal Life Support System (T-PLS) (한국형 박동식 생명구조장치(T-PLS) 순환회로를 위한 최적화 모델 연구)

  • Lim Choon Hak;Son Ho Sung;Lee Jung Joo;Hwang Znuke;Lee Hye Won;Kim Kwang Taik;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.10 s.255
    • /
    • pp.661-668
    • /
    • 2005
  • Background: We have hypothesized that, if a low resistant gravity-flow membrane oxygenator is used, then the twin blood sacs of TPLS can be located at downstream of the membrane oxyenator, which may double the pulse rate at a given pump rate and increase the pump output. The purpose of this study was to determine the optimal configuration for the ECLS circuits by using the concept of pulse energy and pump output. Material and Method: Animals were randomly assigned to 2 groups in a total cardiopulmonary bypass model. In the serial group, a conventional membrane oxygenator was located between the twin blood sacs. In the parallel group, the twin blood sacs were placed downstream of the gravity-flow membrane oxygenator. Energy equivalent pressure (EEP) and pump output were collected at pump-setting rates of 30, 40, and 50 BPM. Result: At the given pump-setting rate, the pulse rate was doubled in the parallel group. Percent changes of mean arterial pressure to EEP were $13.0\pm1.7,\; 12.0\pm1.9\;and\;7.6\pm0.9\%$ in the parallel group, and $22.5\pm2.4,\; 23.2\pm1.9,\;and\;21.8\pm1.4\%$ in the serial group at 30, 40, and 50 BPM of pump-setting rates. Pump output was higher in the parallel circuit at 40 and 50 BPM of pump-setting rates $(3.1\pm0.2,\;3.7\pm0.2L/min\;vs.\;2.2\pm0.1\;and\;2.5\pm0.1L/min,\;respectively,\;p=0.01)$. Conclusion: Either parallel or serial circuit configuration of the ECLS generates effective pulsatility. As for the pump out, the parallel circuit configuration provides higher flow than the serial circuit configuration.

Optimization of Biotransformation Process for Sodium Gluconate Production by Aspergillus niger (Aspergillus niger를 이용한 글루콘산 나트륨 생산 생변환 공정의 최적화)

  • 박부수;조병관;이상윤;임승환;김동일;김병기
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • In order to produce high concentration of sodium gluconate, optimization of the fermentation conditions, such as glucose concentration, inoculum size, dissolved oxygen concentration and glucose feeding method, was examined. When the glucose concentration was maintained in the range of 30∼50 g/L during the batch fermentation, glucose conversion yield and productivity were 92.2% and 6.0 g/L/hr, respectively. In the case of the low concentration below 30 g/L, the yield decreased by about 25%. As the inoculum size increased above 20%(w/v), lag phase was shortened but the productivity decreased. The dissolved oxygen level of 60∼70% was shown to be the threshold point for 75% of increase in the productivity of sodium gluconate. Finally, optimal glucose feeding rate was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and on the oxygen uptake rate and etc. Our result shows that glucose feeding, based on the oxygen uptake rate is a very simple, efficient and robust method, especially when oxygen is consumed as a substrate for the bioconversion. Using the above glucose feeding strategy under the optimized condition, 255 g/L of sodium gluconate concentration, 12 g/L/hr of productivity and 95% of glucose conversion yield were achieved with A. niger ACM53.

  • PDF

Dosimetric Evaluation of a Small Intraoral X-ray Tube for Dental Imaging (치과용 초소형 X-선 튜브의 선량평가)

  • Ji, Yunseo;Kim, YeonWoo;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.160-167
    • /
    • 2015
  • Radiation exposure from medical diagnostic imaging procedures to patients is one of the most significant interests in diagnostic x-ray system. A miniature x-ray intraoral tube was developed for the first time in the world which can be inserted into the mouth for imaging. Dose evaluation should be carried out in order to utilize such an imaging device for clinical use. In this study, dose evaluation of the new x-ray unit was performed by 1) using a custom made in vivo Pig phantom, 2) determining exposure condition for the clinical use, and 3) measuring patient dose of the new system. On the basis of DRLs (Diagnostic Reference Level) recommended by KDFA (Korea Food & Drug Administration), the ESD (Entrance Skin Dose) and DAP (Dose Area Product) measurements for the new x-ray imaging device were designed and measured. The maximum voltage and current of the x-ray tubes used in this study were 55 kVp, and 300 mA. The active area of the detector was $72{\times}72mm$ with pixel size of $48{\mu}m$. To obtain the operating condition of the new system, pig jaw phantom images showing major tooth-associated tissues, such as clown, pulp cavity were acquired at 1 frame/sec. Changing the beam currents 20 to $80{\mu}A$, x-ray images of 50 frames were obtained for one beam current with optimum x-ray exposure setting. Pig jaw phantom images were acquired from two commercial x-ray imaging units and compared to the new x-ray device: CS 2100, Carestream Dental LLC and EXARO, HIOSSEN, Inc. Their exposure conditions were 60 kV, 7 mA, and 60 kV, 2 mA, respectively. Comparing the new x-ray device and conventional x-ray imaging units, images of the new x-ray device around teeth and their neighboring tissues turn out to be better in spite of its small x-ray field size. ESD of the new x-ray device was measured 1.369 mGy on the beam condition for the best image quality, 0.051 mAs, which is much less than DRLs recommended by IAEA (International Atomic Energy Agency) and KDFA, both. Its dose distribution in the x-ray field size was observed to be uniform with standard deviation of 5~10 %. DAP of the new x-ray device was $82.4mGy*cm^2$ less than DRL established by KDFA even though its x-ray field size was small. This study shows that the new x-ray imaging device offers better in image quality and lower radiation dose compared to the conventional intraoral units. In additions, methods and know-how for studies in x-ray features could be accumulated from this work.

A Study of Establishing the Plan of Lodging for the Workers of Gaesung Industrial Complex (개성공단 근로자 기숙사 건립 계획 연구)

  • Choi, Sang-Hee;Kim, Doo-Hwan;Kim, Sang-Yeon;Choi, Eun-Hee
    • Land and Housing Review
    • /
    • v.6 no.2
    • /
    • pp.67-77
    • /
    • 2015
  • Now that it is the current situation that the smooth supply and demand are necessary for 2nd phase of beginning construction and stable development of Gaesung Industrial Complex, this study was willing to offer the planning criteria and model to establish the lodging for the workers in Gaesung Industrial Complex based on the agreement that both South and North Korea agreed in 2007. Regarding the plan, its standard and the alternative were reviewed considering welfare of workers, economic efficiency, technical validity, possibility of agreement and long-term development. The exclusive area per capita was calculated through Labor Standards Act of Korea and status survey of lodging for the workers provided to border line area between China and North Korea and the economic alternative based on one room for 6 persons with the public restroom was compared with that of development type based on one room for 4 persons with indoor restroom. Especially regarding the proposed site, the area with the optimized position was set by considering gradient, accessibility and convenience of development out of the area of Dongchang-ri where was agreed already and the priority of the proposed site that can keep the existing building site and provide was offered. The necessary period for whole construction was set as approximately 36 months. Regarding construction method, RC Rahmen method was selected as the optimized alternative considering the workmanship of manpower of North Korea and conditions of supply and demand of materials and cluster-type vehicle allocation plan based on 4~6 units considering the efficiency of supplying service facilities and convenient facilities along the simultaneous accommodation of 15,000 people was offered. It was analyzed that total business expenses of approximately 80~100 billion Korean Won would required though there were the difference for each alternative in the charged rental way that the development business owner develops by lending the inter-Korea Cooperation Fund and withdraws the rent by the benefit principle. The possibility of withdrawing the rent was analyzed assuming that the period of withdrawing the investment is 30 years. Especially for the operation management after moving, the establishment of the committee of operating the lodging for the workers of Gaesung Industrial Complex (tentative name) was offered with the dualized governance that the constructor takes charge of operational management, collecting fees and management of infrastructure and human resource management is delegated to North Korea.

Rapid Detection of Radioactive Strontium in Water Samples Using Laser-Induced Breakdown Spectroscopy (LIBS) (Laser-Induced Breakdown Spectroscopy (LIBS)를 이용한 방사성 스트론튬 오염물질에 대한 신속한 모니터링 기술)

  • Park, Jin-young;Kim, Hyun-a;Park, Kihong;Kim, Kyoung-woong
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Along with Cs-137 (half-life: 30.17 years), Sr-90 (half-life: 28.8 years) is one of the most important environmental monitoring radioactive elements. Rapid and easy monitoring method for Sr-90 using Laser-Induced Breakdown Spectroscopy (LIBS) has been studied. Strontium belongs to a bivalent alkaline earth metal such as calcium and has similar electron arrangement and size. Due to these similar chemical properties, it can easily enter into the human body through the food chain via water, soil, and crops when leaked into the environment. In addition, it is immersed into the bone at the case of human influx and causes the toxicity for a long time (biological half-life: about 50 years). It is a very reductive and related with the specific reaction that makes wet analysis difficult. In particular, radioactive strontium should be monitored by nuclear power plants but it is very difficult to be analysed from high-cost problems as well as low accuracy of analysis due to complicated analysis procedures, expensive analysis equipment, and a pretreatment process of using massive chemicals. Therefore, we introduce the Laser-Induced Breakdown Spectroscopy (LIBS) analysis method that analyzes the elements in the sample using the inherent spectrum by generating plasma on the sample using pulse energy, and it can be analyzed in a few seconds without preprocessing. A variety of analytical plates for samples were developed to improve the analytical sensitivity by optimizing the laser, wavelength, and time resolution. This can be effectively applied to real-time monitoring of radioactive wastewater discharged from a nuclear power plant, and furthermore, it can be applied as an emergency monitoring means such as possible future accidents at a nuclear power plants.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.