• Title/Summary/Keyword: 최적화알고리즘

Search Result 3,566, Processing Time 0.027 seconds

Shape Optimization of Arches (아치구조의 형상 최적화)

  • Han, Sang Hoon;Byun, Keun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.127-135
    • /
    • 1984
  • This paper considers the problem of optimum shaping of steel arches subjected to general loading. The weight of arches is considered as the objective function and the appropriate combinations of section forces, material volume, arc length, and closed section area of arches are considered as the stress constraints. The shape optimization problems are formulated in terms of the design variables of sectional areas of each element. First the cost sensitivity of the design is investigated. Then the investigation comprises the search for the optimum arch form as well as the optimum area distribution along the arch. Two spaces of shape optimization algorithm will be treated, the first space corresponding to the section optimization by the Modified Newton Raphson Method, and the second space to the coordinate optimization by the Powell Method. The optimization algorithm is evaluated and the optimum span-rise ratios for the given arches are evaluated.

  • PDF

Bacteria Cooperative Optimization Based on E. Coli Chemotaxis (대장균의 주화성에 근거한 박테리아 협동 최적화)

  • Jeong, Hui-Jeong;Jeong, Seong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.241-244
    • /
    • 2007
  • 본 논문에서는 박테리아의 주화성에 기초한 Bacteria Cooperative Optimization(BCO) 알고리즘을 소개한다. BCO는 Ant Colony Optimization (ACO)처럼 자연계에 존재하는 생명체의 행동양식을 모방하여 만든 최적화 알고리즘으로 크게 초기화, 측정, 행동결정, 이동으로 구성된다. 우리는 먼저 BCO 알고리즘을 설명하고 2차원 함수 최적화 문제를 이용하여 BCO알고리즘과 Genetic Algorithm(GA) 그리고 Bacterial Foraging for Distributed Optimization(BFO)의 성능 측정 결과를 기술한다. 실험 결과 BCO의 성능이 GA나 BFO보다 우수함을 보였다.

  • PDF

Weapon-Target Assignment Usins Genetic Algorithms (유전자 알고리즘을 이용한 무장할당)

  • 권경엽;조중선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.55-58
    • /
    • 2003
  • 본 논문에서는 유전자 알고리즘을 이용한 무장할당 문제를 제안하였다. 무장할당이란 적의 공격으로부터 방어대상물의 손상을 최소화하거나 적의 공격물 또는 표적의 격추 확률이 최대가 되도록 표적에 대한 방어무기의 적절한 할당을 목적으로 하는 최적화 문제로서, 본 논문에서는 무장할당 문제에 전역 최적화의 강점을 가진 유전자 알고리즘을 적용하였다. 무장할당문제에 적합한 유전자 알고리즘 형태와 파라메타를 선정하는 방법을 제시하였고, 시뮬레이션을 통해서 기존의 전통적인 최적화 기법과의 성능 비교를 수행한 결과, 제안된 방법이 우수함을 입증하였다.

  • PDF

Alignment Optimization Considering Characteristics of Intersections (교차로의 특성을 고려한 도로선형최적화)

  • KIM, Eungcheol;SON, Bongsoo;CHANG, Myungsoon
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.109-122
    • /
    • 2002
  • 본 연구에서는 교차로의 비용 및 특성을 고려한 도로선형최적화 모형을 유전자 알고리즘(Genetic Algorithms)을 이용하여 개발하였다. 기존의 도로선형최적화 모형은 교차로 특성을 고려하지 못해서 실제 적용에 심대한 문제점을 내재하고 있다. 본 논문에서는 특정 도로선형에 교차로 건설의 필요가 있을 경우, 민감(Sensitive)하고 지배적인(Dominating) 교차로 비용 항목들 즉, 토공비용, 보상비, 포장비, 사고비용, 지체 및 연료소모비용 등의 산정이 시도되었다. 또한 비교적 우수한 도로선형 대안을 유전자 알고리즘을 이용한 탐색과정 중에서 비효율적으로 강제 퇴화시키는 단점 보완을 위한 교차로 국소 최적화 방법(Local Optimization of Intersections)이 개발되어 기존 모형을 보완하였다. 공간상의 도로선형은 매개변수적 묘사(Parametric Representation)를 통하여 구현하였으며 벡터운영(Vector Manipulation)을 통해 교차로비용 산정의 근간인 교차점과 다른 중요점들의 좌표를 찾을 수 있었다. 개발된 교차로 비용산정 모형이 보다 정밀하게 교차로 비용을 산정함이 증명되었으며 궁극적으로는 기존의 최적화 모형의 단점을 보완할 수 있음이 제시되었다. 또한, 새로이 제시된 교차로 국소 최적화 방법이 최적대안 탐색과정의 유연성을 증대하였으며, 결과적으로 효율적인 교차로의 유지에 기여함을 알 수 있었다. 제시된 교차로 국소 최적화 방법은 추후 단일노선이 아닌 도로망 최적화시의 기초를 제시함은 주목할 만 하다. 두개의 예제에서 도출된 최적노선 및 교차로 비용 등의 검토 결과, 도로상의 교차로 건설비용은 도로선형 최적화에 큰 영향을 미치는 실질적이며 민감한 비용 항목임이 검증되었으며 이는 도로선형최적화 모형이 교차로 비용을 반드시 검토 및 평가할 수 있어야 함을 반증한다.

Spacecraft Radiator Design Optimization Approach of Combining Optimization Algorithm with Thermal Analysis (최적화알고리즘과 열해석을 통합한 위성방열판 설계의 최적화 방법에 관한 연구)

  • Kim, Hui-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.24-29
    • /
    • 2013
  • A spacecraft radiator is a thermal control method to eject internally dissipated heat into the space generated from operation of unit boxes. The efficiency of thermal design may be improved by optimizing radiator design. In this paper, the optimization approach method of node-based radiator design was suggested which is to combine numerical thermal analysis with optimization algorithm. This method has meaning that it can be used practically to implement the spacecraft radiator design regardless of thermal analysis and optimization algorithm software and maintain the same basic concept of an ordinary radiator design approach based on node division of a thermal model. The overall analysis framework with thermal analysis and optimization algorithm would be presented.

An Adaptive Evolutionary Algorithm Applied to the Fixed Charge Transportation Problem (고정비용 수송문제에 적용된 적응형 진화 알고리즘)

  • Soak, Sang-Moon;Lee, Hong-Girl
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.121-124
    • /
    • 2006
  • 본 논문에서는 고정비용수송문제와 같은 다양한 네트워크 최적화 문제들에 적용될 수 있는 새로운 진화 알고리즘을 소개한다. 제안하는 알고리즘은 기존의 진화 알고리즘과 비교에서 두가지 다른 특징을 지닌다. 첫째, 해 표현법이 다르다. 초기에, 모든 유전인자 값이 '0'으로 설정된다. 둘째, 각 해들은 일치하는 적합도 값에 따라 일종의 라마크식(Lamarckian) 적응 과정을 수행한다. 제안하는 적응적 진화 알고리즘의 성능을 측정하기 위해 고정비용수송문제에 적용하였으며 또한 동시에 제안하는 알고리즘을 최적화하기 위해 다양한 실험을 수행하였다. 결론적으로, 제안하는 알고리즘은 기존에 고정비용수송문제를 위해 제안된 가장 우수한 알고리즘보다 더 우수한 성능을 보여주었다.

  • PDF

Optimum Allocation of Pipe Support Using Combined Optimization Algorithm by Genetic Algorithm and Random Tabu Search Method (유전알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 배관지지대의 최적배치)

  • 양보석;최병근;전상범;김동조
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.71-79
    • /
    • 1998
  • This paper introduces a new optimization algorithm which is combined with genetic algorithm and random tabu search method. Genetic algorithm is a random search algorithm which can find the global optimum without converging local optimum. And tabu search method is a very fast search method in convergent speed. The optimizing ability and convergent characteristics of a new combined optimization algorithm is identified by using a test function which have many local optimums and an optimum allocation of pipe support. The caculation results are compared with the existing genetic algorithm.

  • PDF

A Study on Product Move Operation Optimal Path Based on Business Supporting System & Spatial Information (업무지원 시스템 및 공간정보 기반의 제품 이동 작업 경로 최적화 기법 연구)

  • Sung-il Park;Ik-Soo choi
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.555-556
    • /
    • 2023
  • 본 논문에서는 제조/물류 기업 등 제품(물품) 이동 작업 시 효율적인 경로 제공을 위한 경로 최적화 기법을 제안한다. 이 기법은 업무지원 시스템(MES, ERP, WMS 등)이 구축되어있는 기업을 대상으로 공간정보와 업무지원 시스템에 저장되는 제품 데이터를 기준 정보로 하며, 다익스트라(Dijkstra), 개미 집단 알고리즘(Ant Colony Algorithm, ACO)등 경로 탐색 알고리즘을 적용하여 문제를 해결하고자 한다. 공간정보는 공장(현장)의 레이아웃(Layout)과 제품이 적재/출하되는 렉(Rack) 등의 위치 정보가 포함되고, 업무지원 시스템에서 제품의 현재 위치, 공정 상태, 등록 시간, 제품 크기 등을 사용한다. 제안하는 기법은 상기 기준 정보를 경로 탐색 알고리즘에 적용하여 적재/출하, 공정 이동, 보관 장소 변경 등 제품의 위치가 변경되는 경우에 경로를 최적화할 수 있는 기법을 제안한다. 제품 이동 작업은 대부분 노동력에 의존하는 작업으로 경로 최적화 기법을 제안함으로써, 인력 비용 감소와 향후 로봇 기반의 제품 이동 작업에도 적용하여 자동화된 작업효과를 가져다 줄 것으로 기대한다.

  • PDF

Goal-Pareto based NSGA-II Algorithm for Multiobjective Optimization (다목적 최적화를 위한 Goal-Pareto 기반의 NSGA-II 알고리즘)

  • Park, Soon-Kyu;Lee, Su-Bok;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1079-1085
    • /
    • 2007
  • This Paper Proposes a new optimization algorithm named by GBNSGA-II(Goal-pareto Based Non-dominated Sorting Genetic Algorithm-II) which uses Goal Programming to find non-dominated solutions in NSGA-II. Although the conventional NSGA is very popular to solve multiobjective optimization problem, its high computational complexity, lack of elitism and difficulty of selecting sharing parameter have been considered as problems to be overcome. To overcome these problems, NSGA-II has been introduced as the alternative for multiobjective optimization algorithm preventing aforementioned defects arising in the conventional NSGA. Together with advantageous features of NSGA-II, this paper proposes rather effective optimization algorithm formulated by purposely combining NSGA-II algorithm with GP (Goal Programming) subject to satisfying multiple objectives as possible as it can. By conducting computer simulations, the superiority of the proposed GBNSGA-II algorithm will be verified in the aspects of the effectiveness on optimization process in presence of a priori constrained goals and its fast converging capability.

Statistical Analysis of Receding Horizon Particle Swarm Optimization for Multi-Robot Formation Control (다개체 로봇 편대 제어를 위한 이동 구간 입자 군집 최적화 알고리즘의 통계적 성능 분석)

  • Lee, Seung-Mok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we present the results of the performance statistical analysis of the multi-robot formation control based on receding horizon particle swarm optimization (RHPSO). The formation control problem of multi-robot system can be defined as a constrained nonlinear optimization problem when considering collision avoidance between robots. In general, the constrained nonlinear optimization problem has a problem that it takes a long time to find the optimal solution. The RHPSO algorithm was proposed to quickly find a suboptimal solution to the optimization problem of multi-robot formation control. The computational complexity of the RHPSO increases as the number of candidate solutions and generations increases. Therefore, it is important to find a suboptimal solution that can be used for real-time control with minimal candidate solutions and generations. In this paper, we compared the formation error according to the number of candidate solutions and the number of generations. Through numerical simulations under various conditions, the results are analyzed statistically and the minimum number of candidate solutions and the minimum number of generations of the RHPSO algorithm are derived within the allowable control error.