• Title/Summary/Keyword: 최적화기준법

Search Result 2, Processing Time 0.021 seconds

Topology Design of a Structure with a Specified Eigenfrequency (주어진 고유주파수를 갖는 구조물의 위상최적설계)

  • Lee, Jong-Hwan;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1210-1216
    • /
    • 2003
  • Topology optimization is applied to determine the layout of a structural component with a specified frequency by minimizing the difference between the specified structural frequency and a given frequency. The homogenization design method is employed and the topology design problem is solved by the optimality criteria method. The value of a weighting factor in the optimality criteria plays an important role in this topology design problem. The modified optimality criteria method approximated by using the binomial expansion is suggested to determine the suitable value of the weighting factor, which makes convergence stable. If a given frequency is set as an excited frequency, it is possible to avoid resonance by moving away the specified structural frequency from the given frequency. The results of several test problems are compared with previous works and show the validity of the proposed algorithm.

Topology Design of a Structure with a Specified Eigenfrequency (주어진 고유주파수를 갖는 구조물의 위상최적설계)

  • Lee, Jong-Hwan;Min, Seung-Jae
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.392-397
    • /
    • 2001
  • Topology optimization is applied to determine the layout of a structure whose eigenfrequency coincides with a specified frequency. The topology optimization problem is formulated to minimize the difference between the structural frequency and a given frequency using the homogenization method and the modified optimality criteria method. It turns out that the value of a weighting factor in the updating scheme plays an important role to achieve both a suitable speed and a stable convergence of an algorithm. Unlike a constant weighting factor in previous works, it is suggested that a weight factor is varied during the iteration to control the amount of the frequency change. To substantiate the proposed approach two-dimensional structural design problems are presented and the resulted topology layouts for the specified eigenfrequency are compared to layouts for maximizing the corresponding eigenfrequency.

  • PDF