• Title/Summary/Keyword: 최적형상함수

Search Result 192, Processing Time 0.141 seconds

Shape Optimization of the Metal Boss for a Composite Motor Case (복합재 연소관의 금속 보스 형상 최적설계)

  • Jeong, Seungmin;Kim, Hyounggeun;Hwang, Taekyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.29-37
    • /
    • 2016
  • This paper proposes a shape optimization of the metal boss for a composite motor case using finite element analysis. For the structural safety and the weight reduction of the composite motor case, under the internal pressure, the fiber stress in the dome area and the tightening bolt stress are constrained and the boss weight is set to objective function, respectively. The response surface models are constructed for the performance characteristics by using response surface method. The significance of the design variables about the performance characteristics is evaluated through the ANOVA(analysis of variance) and the goodness of fit test for the constructed model is performed through the regression analysis. The SQP(sequential quadratic programming) algorithm is used for the optimization and the proposed method is verified by performing structural analysis for the optimum shape.

The Selective p-Distribution for Adaptive Refinement of L-Shaped Plates Subiected to Bending (휨을 받는 L-형 평판의 적응적 세분화를 위한 선택적 p-분배)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Lee, Seung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.533-541
    • /
    • 2007
  • The Zienkiewicz-Zhu(Z/Z) error estimate is slightly modified for the hierarchical p-refinement, and is then applied to L-shaped plates subjected to bending to demonstrate its effectiveness. An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the superconvergent patch recovery(SPR) technique. The modified Z/Z error estimate p-refinement is different from the conventional approach because the high order shape functions based on integrals of Legendre polynomials are used to interpolate displacements within an element, on the other hand, the same order of basis function based on Pascal's triangle tree is also used to interpolate recovered stresses. The least-square method is used to fit a polynomial to the stresses computed at the sampling points. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly or selectively. It is noted that the error decreases rapidly with an increase in the number of degrees of freedom and the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

Optimal layout of tidal current turbine array in open channel flow (개수로 흐름에서 조류 터빈의 최적 배열)

  • Han, Jisu;Jung, Jaeyoung;Hwan, Hwang Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.433-433
    • /
    • 2021
  • 본 연구는 개수로 흐름에서 조류발전단지의 터빈 최적 배열의 거시적 특성에 관한 연구를 수행하였다. 천수방정식을 통해 직사각형 개수로의 흐름장을 해석하였고, 상류와 하류단에 대해 각각 유입경계조건(inlet boundary condition)과 Flather 형식의 개방경계조건(open boundary condition)을 부여하여 일정 유량으로 흐르는 개수로 흐름을 구현하였다. 더불어, Strickler의 법칙을 확장한 반력공식을 연계하여, 개수로 흐름에 대한 조류 터빈의 영향을 반영하였다. 주어진 상류의 흐름 조건에 대해 조류발전량을 최대로 하는 최적 배열을 구하기 위해 터빈 반력모형을 연계한 천수방정식, 터빈간 최소간격, 그리고 발전단지영역을 제한조건으로 하는 발전량 최대화 문제를 구성하였다. 여기서 조류 터빈의 위치를 나타내는 벡터를 설계변수로 두었는데, 설계되는 터빈의 수가 증가함에 따라 최적화 문제의 계산량이 증가하지 않도록 수반법(adjoint method)을 경사도기반법(gradient-based method)에 연계한 방법이 이용되었다. 다수의 터빈초기배치로 상당한 수치실험이 수행되었고, 발전량 최대화를 이루도록 최적화된 터빈의 배치들이 큰 규모에서 고유한 형상으로 수렴함을 확인하였다. 이러한 특성은 발전단지의 너비와 터빈의 최소간격의 함수로 정의된 무차원수 E를 바탕으로 설명되었다. 구체적으로, E가 1보다 작을 때에는 선형배열이 최적배열로 나타났고, E가 1을 넘어 점차 커짐에 따라 하류에 오목한 형상을 보이다가 V-형태로 발전하는 양상을 보였다. 또한, 어느 임계 수 이상의 터빈이 배치되는 경우 일열 배열을 유지하지 못하고 이열 배열로 분리됨이 관찰되었다.

  • PDF

An Investigation on Parameters of a RQP Algorithm for Optimum Structural Design (최적구조물 설계를 위한 RQP 알고리즘의 매개변수 성능평가)

  • 임오강;이병우;변준석
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.83-95
    • /
    • 1990
  • Many structural optimization problems are solved by numerical algorithms since these are complicated and nonlinear. To provide a wider base and popular it to structual design optimization, reliable, accurate and superlinearly convergent nonlinear programming algorithm with active-set strategy have been developed. One of these is RQP(recursive quadratic programming method). This algorithm has several parameters and its performance is influenced by variations of these key parameters. Therefore, an RQP algorithm is selected to enhance its numerical performances by choosing proper parameters. The paper persents these influences on its numerical performance. For comparison of performances, a structural design software for minimum weight of truss subjected to displacement, stress, and lower and upper bounds on design variables is also implemented.

  • PDF

Optimal Strengthening in RC Hollow Slab Bridges Using External Prestressing (외부 프리스트레싱을 이용한 RC 중공슬래브교의 최적보강)

  • Park, Kyung-Sik;Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.204-211
    • /
    • 2009
  • In this study, the optimal method is applied to strengthening of RC hollow slab bridges using external prestressing. The Queen-post and King-post shapes are considered to find the effective tendon configurations. In order to achieve the objective rating factor, the optimal configurations and tendon forces are obtained by using the Sequential Unconstrained Minimization Technique (SUMT). The object function for optimal strengthening is constituted with the dimensionless function of material costs. The constraints are formulated by design specification and the rating factor. The validity of this study is presented by the analysis of the results of strengthening of the RC hollow slab bridges.

Form-finding of Free-form Membrane Structure based on Geometrically Non-linear Analysis and Interface method (기하학적 비선형해석을 이용한 비정형 막 구조물의 형상탐색과 인터페이스 기법)

  • Kim, Jee-In;Na, Yoo-Mi;Kang, Joo-Won;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • The membrane structure maintains stable form by giving initial tension to ductile membrane and increasing the stiffness of exterior that is much adopted in the large span spatial structure by making its thickness thin. This kind of membrane structure has characteristic that can express free-form curve, so the selection of structural form is very important. So, this paper proposes the expression of free-form surface based on NURBS basis function and the finite element method considering geometrical nonlinearity for the deduction of large deformation result. Also, for minimizing the approximation of the surface that is derived from the form-finding result, the interface method that change finite element mesh to NURBS is proposed. So, the optimum surface of free-form membrane is derived.

The Effect of Inside and Outside Fluids on the Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화에 미치는 내 외 유체의 영향)

  • Kang, Hyung-Suk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.14-22
    • /
    • 2007
  • A reversed trapezoidal fin with variable lateral surface slope is optimized using a two-dimensional analytic method. For a fin base boundary condition, convection from the inside fluid to the inside wall and conduction from the inside wall to the fin base are considered. Heat loss from the fin tip surface is not ignored. The maximum heat loss at the practical fin length, the corresponding optimum fin efficiency, fin length and fin base height are presented as a function of the fin inside and outside convection characteristic numbers. One of the results shows that the optimum fin shape becomes 'fatter and shorter' as the ratio of fin tip height to base height increases.

Analysis of Reflection Coefficients of Waves Propagating over Various Depression of Topography (다양한 함몰지형 위를 통과하는 파랑의 반사율 해석)

  • Kang, Gyu-Young;Jung, Tae-Hwa;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.899-908
    • /
    • 2007
  • In this study, wave reflection due to depression of seabed is calculated by using eigenfunction expansion method. The proper numbers of steps and evanescent modes needed for analysis are suggested by applying the eigenfunction expansion method to bottom topography of which slope or curvature varies. While satisfying shallow or intermediate water depth condition, the optimal figure of depression of seabed is obtained by calculating reflection coefficient for various depressions of seabed. The reflection coefficient with distance between the depression of seabeds is then calculated after arraying the optimal geometry in two and three rows.

Multi-disciplinary Optimization of Composite Sandwich Structure for an Aircraft Wing Skin Using Proper Orthogonal Decomposition (적합직교분해법을 이용한 항공기 날개 스킨 복합재 샌드위치 구조의 다분야 최적화)

  • Park, Chanwoo;Kim, Young Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.535-540
    • /
    • 2019
  • The coupling between different models for MDO (Multi-disciplinary Optimization) greatly increases the complexity of the computational framework, while at the same time increasing CPU time and memory usage. To overcome these difficulties, POD (Proper Orthogonal Decomposition) and RBF (Radial Basis Function) are used to solve the optimization problem of determining the thickness of composites and sandwich cores when composite sandwich structures are used as aircraft wing skin materials. POD and RBF are used to construct surrogate models for the wing shape and the load data. Optimization is performed using the objective function and constraint function values which are obtained from the surrogate models.

Aerodynamic Design of Helicopter Rotor Airfoil in Forward Flight Using Response Surface Method (반응표면법을 이용한 전진비행하는 헬리콥터 로터 에어포일의 공력설계)

  • Sun, Hyo-Sung;Lee, Soo-Gab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.13-18
    • /
    • 2004
  • This paper describes an efficient and robust optimization method for helicopter rotor airfoil design in forward flight. Navier-Stokes analysis was employed to compute the dynamic response of an airfoil, which simulates the unsteady rotor flow-field in forward flight. The optimization system consists of two categories; Response Surface Method to construct the response surface model based on D-optimal 3-level factorial design, and Genetic Algorithm to obtain the optimum solution of a defined objective function including penalty terms of constraints. The influence of design variables and their interactions on the aerodynamic performance was examined through the optimization process.