• Title/Summary/Keyword: 최적입도

Search Result 174, Processing Time 0.028 seconds

Production of Foamed Glass by Using Hydrolysis of Waste Glass (II) - Foaming Process of Hydrated Glass - (폐유리의 가수분해 반응에 의한 발포유리의 제조(II) - 가수분해된 유리의 발포 -)

  • Lee, Chul-Tae;Lee, Hong Gil;Um, Eui-Heum
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.760-767
    • /
    • 2005
  • The goal of this study was to find an application method of the waste soda-lime glass as the feed material for foamed glass by foaming of hydrated waste glass. The proper conditions for the foaming of hydrated waste glass were found to be: temperature of $92.5^{\circ}C$; reaction time of 10~20 min; particle size of -325 mesh as the unhydrated glass starting materials; and graphite weight to the hydrated glass ratio of 0.003 as the foaming agent. The resulting formed glass made from hydrated mixed waste glass under above mentioned conditions had the characteristics of density less than $0.2g/cm^3$ and thermal conductivity of $0.05kcal/mh^{\circ}C$.

The Study of Milling Properties for Optimization of Treatment and Recycling of Converter Slag (제강슬래그 처리 및 재활용의 최적화를 위한 분쇄 특성에 관한 연구)

  • Kuh, Sung-Eun;Hwang, Kyoung-Jin;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1139-1148
    • /
    • 2000
  • To treat and recycle a large quantity of converter slag. the milling properties of -14/ +24 mesh-sized slag has been considered. The optimal conditions in milling process were investigated for producing powder-type slag and the required consumption was derived for the economical grinding. The characteristics of milling processes were studied in the variation of the rotational speed, milling time, filling ratio of ball, and size and amount of feed. The grinding efficiency was also examined. The optimal rotational speed in this experimental condition was observed to be the value of 79% of critical speed. The extent of grinding was increased with increasing the grinding time. but the efficiency of milling was decreased with the time. 50% ball filling was shown to have the optimal grinding effect, and less amount and small-sized feed made the milling efficiency high. As the result, using Bond's equation, power required for efficient milling was considered and the highest value was observed in the condition of high grinding time and optimal rotational speed.

  • PDF

Physical Properties of Mudbelt Sediments in the Southeastern Inner Shelf of Korea (한국 남동해역 내대륙붕 이토대 퇴적물의 물리적 성질)

  • Kim, Gil-Young;Kim, Dae-Choul;Seo, Young-Kyo;Park, Soo-Chul;Choi, Jin-Hyuk;Kim, Jeong-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.338-348
    • /
    • 1999
  • Physical properties of mudbelt sediments in the southeastern inner shelf of Korea are studied from 14 cores. Physical properties, compressional wave velocity, and sediment texture for core sediments are analyzed. The major source of sediment in the study area is the Nakdong River. Fine-grained sediments from the river are transported northeastward by coastal circulation and the Tsushima Current, resulting in a gradual northeastward increase in porosity and a decrease in wet bulk density and velocity. The trend matches well with the bathymetry. The mean grain size appears to be the most important variable to determine the physical properties and velocity. The variations of physical properties with burial depth are dependent more strongly on sediment texture than compaction and/or consolidation. Correlations between the physical properties and the sediment texture show slight deviations from those of the continental terrace sediment in the North Pacific and inner shelf sediment in the South Sea of Korea. The velocity is higher than that of the North Pacific and the South Sea sediments between these areas. This is probably due to differences in sedimentary, environment and mineral compositions. The higher sediment velocity in the study area may also be attributed to the escape of gas from pore space which decreases void ratio.

  • PDF

Magnetic Properties of Nylon 6 based Nd-Fe-Co-Zr-B Pellets for Injection Molding (사출성형용 Nylon 6계 Nd-Fe-Co-Zr-B 펠렛의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1993
  • Nylon 6 based magnetic pellets for injection molding were produced using plasma arc melt-spun $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ powders. Two sorts of bonded magnets made of two different sizes of particles ($38~75\;\mu\textrm{m}$ and $75~150\;\mu\textrm{m}$) were prepared to determine critical volume fraction of magnet powders, and the magnetic prop erties of the magnets were discussed as a function of density. For the nylon fi based Nd-Fe-Co-Zr-B pellets made of $38~75\;\mu\textrm{m}$ particles, the critical volume fraction of powders 0.7 was obtained with the pellet density which is 90% of theoretical density while the magnets of $75~150\;\mu\textrm{m}$ showed the density of 87% of the theoretical value with the same volume fraction. The nylon (i magnets with the addition of 0.5 wt. % silicon oil only exhibited the best magnetic properties to have $_{i}H_{c}=8.8\;kOe,\;B_{r}=5.1\;kG$ and $(BH)_{max}=5.2\;MGOe$ which are of world class. An empirical relationship in predicting the magnet density with a known fraction ($V_s$) of loading powders was obtained such as ${\rho}(g/cm^{3})=1.1+K.V_{s}$ where the K ranges over 5.3~5.6 be ing dependent upon the particle size loaded.

  • PDF

A Soil Mechanical Study for a Practical Application to Forest Road Construction (임도설계(林道設計)에의 응용(應用)을 위한 흙의 토질(土質) 역학적(力學的) 특성(特性))

  • Kim, Ki Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.166-177
    • /
    • 1995
  • This study was carried out to discuss how soils in the area planned for a forest road construction can be mechanically tested and practically applied. For this, 16 soil test samples from 8 plots(2 samples per plot) were used. The major tests are focused on unit weight before and after cut, water content, liquid and plastic limits, sieve and hydrometer analysis etc. The total unit weight(${\rho}_t$) before and after cut are $1.69g/cm^3$ and $1.19g/cm^3$, respectively. Their water contents are 21.0% and 20.5%. The coefficient of uniformity U and coefficient of curvature C obtained from sieve and hydrometer analysis are 125 and 0.42, which mean generally not well graded. On the soil classification by USCS, SM(silty sand or silt-sand mixed soil)is a Key soil, but it seems to be not good for fill material. From the standard proctor test are resulted $1.40{\pm}0.065g/cm^3$ for the unit weight(${\rho}$) in the nature and $1.88{\pm}0.049g/cm^3$ for the optimum proctor unit weight(${\rho}pr$) each. With this to say, it is necessary more powerful compaction work at earth filling, with which this soil reachs enough the ${\rho}pr$, and more earth.

  • PDF

A Study on the Mechanical Properties of Surface Activated Waste EPDM and The Analysis of Odor Materials (표면 활성화된 폐 EPDM 분말의 물성과 냄새 성분 분석 연구)

  • Choi, J.;Kim, S.;Chung, K.;Chung, J.;Yoo, T.;Yang, J.
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.249-258
    • /
    • 2007
  • In this study, the EPDM powder which was surface activated by high temperature and shear pulverization process was prepared and the mechanical properties and odor material analysis were investigated. Analysis for particle size and size distribution of waste of the EPDM powder has been performed. The waste EPDMs used in this study were 4 types of solid, sponge, solid+sponge, and solid+metal. According to the results, the solid type showed the smallest particle size among the 4 types of EPDM powder. Effective surface devulcanization of EPDM powder could be obtained by the addition of the reclaiming agent. The dicumyl peroxide was considered as the best crosslink agent for dynamic vulcanization when the surface activated EPDM powder was blended with polyolefin in order to make TPE. Also, the optimum amounts of DCP was 6 phr in terms of surface crosslink reaction and mechanical properties of EPDM powder. The processes of water adsorption and rose oil addition were employed to remove the odor of EPDM powder caused by reclaiming agent. The GC/MS was used to analyze the odor compounds.

Physico-Chemical Characteristics of Sediment in Sedimentation Tank of Infiltration Trench and Filtration System (비점오염저감시설인 침투도랑과 여과형 시설내 침강지 퇴적의 물리화학적 특성 분석)

  • Lee, Soyoung;Lee, Eun-Ju;Kim, Chulmin;Maniquiz, M.C.;Son, Youngkyu;Khim, Jeehyeong;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.35-42
    • /
    • 2007
  • The paved areas such as parking lots and roads are stormwater intensive landuses since they are impervious and have high pollutant mass emissions from vehicular activity. Vehicle emissions include different pollutants such as heavy metals, oil and grease, particulates from sources such as fuels, brake pad wear and tire wear. Especially, the released heavy metals can be easily absorbed on the surface area of small particulate materials because of its ionic strength. Therefore, by constructing the sedimental tank in structural BMPs as a pre-treatment facility, the particles and heavy metals both can be removed from the runoff at an instant. To understand the physico-chemical characteristics of sediments from sedimentation tank, one-year study at an infiltration trench and filtration system was conducted to quantify the metal mass absorbed on sediments with various particle sizes. The structural BMPs for this study are located in Yongin City, Kyunggido. The research results show that Cu, Zn and Pb are dominant metal compounds in the sediments. Also the metal concentrations are highest at the ranges of $425-850{\mu}m$ particle sizes. The results will provide the basic physico-chemical information of sediments to treat it as solid wastes and to determine the design criteria of sedimentation tank in structural BMPs.

  • PDF

Compositional Effect on the Magnetic Properties of Nd-Fe-Co-B and Nd-Fe-Co-Zr-B Bonded Magent (합금조성에 따른 Nd-Fe-Co-B 및 Nd-Fe-Co-Zr-B계 본드자석의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1991
  • In compacting the melt-spun $Nd_{14}Fe_{76}Co_{4}B_{6}$ and $Nd_{10.5}Fe_{79}Co_{2}Zr_{15}B_{7}$ magnetic powders. the difference in composition induces a different behavior of closed packing rate as a function of aspect ratio of the powders. The $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy having a low Co/Fe ratio (low density) shows the better green density to have an enhanced closed packing rate. An empirical power equation relating the green density with the compacting pressure was obtained such as ${\phi}(g/cm^{2})=5.2~5.6{\times}P^{0.045~0.065}(ton/cm^{2})$. The $Nd_{14}Fe_{76}Co_{4}B_{6}$ alloy having a high Nd/Fe ratio possesses much finer grain size(50~60 nm) than that of $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy and shows the higher coercivity($iH_{c}=14~15kOe$). The higher Nd/Fe ratio in the melt-spun Nd-Fe-Co-B alloy, where the domain wall pinning mechanism was found to be predominant, assists the formation of Nd-rich grain boundary phase acting as a pinning site. The grain boundary ranges over $12~16\;{\AA}$ thick in the Nd-Fe-Co-B alloy while it ranges over $8~12\;{\AA}$ thick in the Nd-Fe-Co-Zr-B alloy.

  • PDF

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (II) (열저항 특성을 고려한 지중송전관로 되메움재의 최적화(II))

  • Kim, You-Seong;Cho, Dae-Seong;Park, Young-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.123-130
    • /
    • 2011
  • In the precedent study it was presented that the comparison of thermal resistivity using various backfill materials including river sand regarding water content, dry unit weight and particle size distribution. Based on the precedent study, this study focused on developing the optimized backfill material that would improve the power transfer capability and minimize the thermal runaway due to an increase of power transmission capacity of underground power cables. When raw materials, such as river sand, recycled sand, crush rock and stone powder, are used for a backfill material, they has not efficient thermal resistivity around underground power cables. Thus, laboratory tests are performed by mixing Fly-ash, slag and floc with them, and then it is found that the optimized backfill material are required proper water content and maximum density. Through various experimental test, when coarse material, crush rock, is mixed with recycled sand, stone powder, slag or floc for a dense material, the thermal resistivity of it has $50^{\circ}C$-cm/Watt at optimum moisture content, and the increase of thermal resistivity does not happen in dry condition. The result of experiments approach the optimization of the backfill materials for underground power cables.

Physical Properties Evaluation of Porous Concrete according to Target Porosity and Pumice Contents Ratio for Application of the Aquatic Environment (수계환경 적용을 위한 설계공극률 및 부석 혼입률에 따른 포러스콘크리트의 물리적 특성 평가)

  • Kim, Woo-Suk;Park, Jae-Roh;Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.703-711
    • /
    • 2016
  • The present study is mainly aimed at securing adequate pores which are applicable to the aquatic environment and satisfying the required strength of porous concrete as a structure by substituting pumice for crushed stone which is usually used for the fabrication of porous concrete. Accordingly, in order to deduce the optimum mixing conditions applicable to the aquatic environment, we sought to evaluate the porosity, coefficient of permeability and compressive strength of porous concrete based on the target porosity and the mixing factors for pumice. By examining the porosity and coefficient of permeability of porous concrete and the physical properties of its compressive strength based on the target porosity and the mixing factors for pumice, it is judged that the optimum mixtures for porous concrete applicable to the aquatic environment which satisfy both the necessity of securing adequate pores and the required strength for porous concrete as a structure are PC I I-10-0, PC I I-10-5 and PC I I-10-10.