• Title/Summary/Keyword: 최적위치

Search Result 2,432, Processing Time 0.028 seconds

Experimental Analysis of Nodal Head-outflow Relationship Using a Model Water Supply Network for Pressure Driven Analysis of Water Distribution System (상수관망 압력기반 수리해석을 위한 모의 실험시설 기반 절점의 압력-유량 관계 분석)

  • Chang, Dongeil;Kang, Kihoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.421-428
    • /
    • 2014
  • For the analysis of water supply network, demand-driven and pressure-driven analysis methods have been proposed. Of the two methods, demand-driven analysis (DDA) can only be used in a normal operation condition to evaluate hydraulic status of a pipe network. Under abnormal conditions, i.e., unexpected pipe destruction, or abnormal low pressure conditions, pressure-driven analysis (PDA) method should be used to estimate the suppliable flowrate at each node in a network. In order to carry out the pressure-driven analysis, head-outflow relationship (HOR), which estimates flowrate at a certain pressure at each node, should be first determined. Most previous studies empirically suggested that each node possesses its own characteristic head-outflow relationship, which, therefore, requires verification by using actual field data for proper application in PDA modeling. In this study, a model pipe network was constructed, and various operation scenarios of normal and abnormal conditions, which cannot be realized in real pipe networks, were established. Using the model network, data on pressure and flowrate at each node were obtained at each operation condition. Using the data obtained, previously proposed HOR equations were evaluated. In addition, head-outflow relationship at each node was analyzed especially under multiple pipe destruction events. By analyzing the experimental data obtained from the model network, it was found that flowrate reduction corresponding to a certain pressure drop (by pipe destruction at one or multiple points on the network) followed intrinsic head-outflow relationship of each node. By comparing the experimentally obtained head-outflow relationship with various HOR equations proposed by previous studies, the one proposed by Wagner et al. showed the best agreement with the exponential parameter, m of 3.0.

Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents (세탁세제 첨가용 효소 개발을 위한 남극 해양세균 유래 저온성 단백질분해효소의 특성 연구)

  • Park, Ha Ju;Han, Se Jong;Yim, Joung Han;Kim, Dockyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • A cold-active and alkaline serine protease (Pro21717) was partially purified from the Antarctic marine bacterium Pseudoalteromonas arctica PAMC 21717. On a zymogram gel containing skim milk, Pro21717 produced two distinct clear-zones of approximately 37 kDa (low intensity) and 74 kDa (high intensity). These were found to have identical N-terminal sequences, suggesting they arose from an identical precursor and that the 37 kDa protease might homodimerize to the more active 74 kDa form of the protein. Pro21717 displayed proteolytic activity at $0-40^{\circ}C$ (optimal temperature of $40^{\circ}C$) and maintained this activity at pH 5.0-10.0 (optimal pH of 9.0). Notably, relative activities of 30% and 45% were observed at $0^{\circ}C$ and $10^{\circ}C$, respectively, in comparison to the 100% activity observed at $40^{\circ}C$, and this enzyme showed a broad substrate range against synthetic peptides with a preference for proline in the cleavage reaction. Pro21717 activity was enhanced by $Cu^{2+}$ and remained stable in the presence of detergent surfactants (linear alkylbenzene sulfonate and sodium dodecyl sulfate) and other chemical components ($Na_2SO_4$ and metal ions, such as $Ba^{2+}$, $Mg^{2+}$, $Ca^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $K^+$, and $Na^{2+}$), which are often included in commercial detergent formulations. These data indicate that the psychrophilic Pro21717 has properties comparable to the well-characterized mesophilic subtilisin Carlsberg, which is commercially produced by Novozymes as the trademark Alcalase. Thus it has the potential to be used as a new additive enzyme in laundry detergents that must work well in cold tap water below $15^{\circ}C$.

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.

Two-dimensional Velocity Measurements of Campbell Glacier in East Antarctica Using Coarse-to-fine SAR Offset Tracking Approach of KOMPSAT-5 Satellite Image (KOMPSAT-5 위성영상의 Coarse-to-fine SAR 오프셋트래킹 기법을 활용한 동남극 Campbell Glacier의 2차원 이동속도 관측)

  • Chae, Sung-Ho;Lee, Kwang-Jae;Lee, Sungu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2035-2046
    • /
    • 2021
  • Glacier movement speed is the most basic measurement for glacial dynamics research and is a very important indicator in predicting sea level rise due to climate change. In this study, the two-dimensional velocity measurements of Campbell Glacier located in Terra Nova Bay in East Antarctica were observed through the SAR offset tracking technique. For this purpose, domestic KOMPSAT-5 SAR satellite images taken on July 9, 2021 and August 6, 2021 were acquired. The Multi-kernel SAR offset tracking proposed through previous studies is a technique to obtain the optimal result that satisfies both resolution and precision. However, since offset tracking is repeatedly performed according to the size of the kernel, intensive computational power and time are required. Therefore, in this study, we strategically proposed a coarse-to-fine offset tracking approach. Through coarse-to-fine SAR offset tracking, it is possible to obtain a result with improved observation precision (especially, about 4 times in azimuth direction) while maintaining resolution compared to general offset tracking results. Using this proposed technique, a two-dimensional velocity measurements of Campbell Glacier were generated. As a result of analyzing the two-dimensional movement velocity image, it was observed that the grounding line of Campbell Glacier exists at approximately latitude -74.56N. The flow velocity of Campbell Glacier Tongue analyzed in this study (185-237 m/yr) increased compared to that of 1988-1989 (140-240 m/yr). And compared to the flow velocity (181-268 m/yr) in 2010-2012, the movement speed near the ground line was similar, but it was confirmed that the movement speed at the end of the Campbell Glacier Tongue decreased. However, there is a possibility that this is an error that occurs because the study result of this study is an annual rate of glacier movement that occurred for 28 days. For accurate comparison, it will be necessary to expand the data in time series and accurately calculate the annual rate. Through this study, the two-dimensional velocity measurements of the glacier were observed for the first time using the KOMPSAT-5 satellite image, a domestic X-band SAR satellite. It was confirmed that the coarse-to-fine SAR offset tracking approach of the KOMPSAT-5 SAR image is very useful for observing the two-dimensional velocity of glacier movements.

Analysis of Marketing Performances according to Raising Environment in Broilers (육계의 사육환경에 따른 출하성적 분석)

  • Kim, Gye-Woong;Kim, Ji-Hyuk;Kim, Hack-Youn;Kim, Bong-Ki;Park, Hee-Bok;Choe, Juhui;Kim, Jun-Ho
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This study was conducted to investigate basic data of development for appropriate management system in broiler. Data such as ages at marketing, livability, body weight, etc. were collected from a total of 53 broiler farms located in Chungnam, Chungbuk, Jeollanam, Jeollabuk, Gyeongbuk. 1. Average of ages at marketing were 32 days. Those of windowless house and open-type house were 31.96 and 32.03 days, respectively. The significant difference among four seasons was highly found (P<0.001). The longest ages at marketing were 32.86 days in winter. Average of livability was 96.25%. According to type of chick house, those of windowless house and open-type house were 95.93% and 96.59%, respectively. The livability according to season showed significant difference (P<0.05). The highest livability was 97.39% in autumn. However, the lowest livability was 95.36% in summer. 2. Average body weight at marketing was 1.62 kg. The significant difference was found in marketing weight by season (P<0.05). The heaviest body weight was 1.65 kg in winter, but the lowest weight was 1.60 kg in summer. Average of FCR was 1.62. the significant differences according to the season were highly found (P<0.01). Especially, the best FCR was 1.59 in autumn. Average cycles of marketing was 5.70. The significant differences according to farms size were found (P<0.05), cycles of small farms and big farms were 5.8 and 5.3, respectively. The ages at marketing were highly correlated with marketing weight (r=0.684) and feed conversion (r=0.439). The correlation between feed conversion and livability was highly negative (r=-0.614). According to the above result, livability and body weight at marketing were badly detected in summer. In conclusion, broiler farms should be controlled through properly environmental management system for improvement of performances.

Preliminary Study on the Development of a Platform for the Selection of Optimal Beach Stabilization Measures against the Beach Erosion - Centering on the Yearly Sediment Budget of Mang-Bang Beach (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구-맹방해변 이송모드별 년 표사수지를 중심으로)

  • Cho, Yong Jun;Kim, In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.28-39
    • /
    • 2019
  • In the design process of counter measures against the beach erosion, information like the main sediment transport mode and yearly net amount of longshore and cross shore transport is of great engineering value. In this rationale, we numerically analyzed the yearly sediment budget of the Mang-Bang beach which is suffering from erosion problem. For the case of cross sediment transport, Bailard's model (1981) having its roots on the Bagnold's energy model (1963) is utilized. In doing so, longshore sediment transport rate is estimated based on the assumption that longshore transport rate is determined by the available wave energy influx toward the beach. Velocity moments required for the application of Bailard's model (1981) is deduced from numerical simulation of the nonlinear shoaling process over the Mang-Bang beach of the 71 wave conditions carefully chosen from the wave records. As a wave driver, we used the consistent frequency Boussinesq Eq. by Frelich and Guza (1984). Numerical results show that contrary to the Bailard's study (1981), Irribaren NO. has non negligible influence on the velocity moments. We also proceeds to numerically simulate the yearly sediment budget of Mang-Bang beach. Numerical results show that for ${\beta}=41.6^{\circ}$, the mean orientation of Mang-Bang beach, north-westwardly moving longshore sediment is prevailing over the south-eastwardly moving sediment, the yearly amount of which is simulated to reach its maxima at $125,000m^3/m$. And the null pint where north-westwardly moving longshore sediment is balanced by the south-eastwardly moving longshore sediment is located at ${\beta}=47^{\circ}$. For the case of cross shore sediment, the sediment is gradually moving toward the shore from the April to mid October, whereas these trends are reversed by sporadically occurring energetic wind waves at the end of October and March. We also complete the littoral drift rose of the Mang-Bang beach, which shows that even though the shore line is temporarily retreated, and as a result, the orientation of Mang-Bang beach is larger than the orientation of null pont, south-eastwardly moving longshore sediment is prevailing. In a case that the orientation of Mang-Bang beach is smaller than the orientation of null pont, north-westwardly moving longshore sediment is prevailing. And these trend imply that the Mang-Bang beach is stable one, which has the self restoring capability once exposed to erosion.

Longitudinal Pattern of Large Wood Distribution in Mountain Streams (산지계류에 있어서 유목의 종단적 분포특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Min Sik;Yeom, Kyu Jin;Lee, Jin Ho;Kimura, Masanobu
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.52-61
    • /
    • 2011
  • Whereas recent researches have elucidated the positive ecological roles of large wood (LW) in fishbearing channels, LW is also recognized as a negative factor of log-laden debris flows and floods in densely populated areas. However in Republic of Korea, no study has investigated longitudinal variations of LW distribution and dynamic along the stream corridor. Hence to elucidate 1) physical factors controlling longitudinal distribution of LW and 2) their effect on variation in LW load amount, we surveyed the amount of LW with respect to channel morphology in a mountain stream, originated from Mt. Ki-ryong in Inje, Gangwondo. Model selection in the Generalized Linear Model procedure revealed that number of boulder (greater than or equal to 1.0 m in diameter), bankfull channel width and their interaction were the best predictors explaining LW load volume per unit channel segment area (unit LW load). In general, boulders scattered within small mountain streams influence LW retention as flow obstructions. However, in this study, we found that the effect of the boulders vary with the channel width; that is, whereas the unit LW load in the segment with narrow channel width increased continuously with increasing boulder number, it in the segment with wide channel width did not depend on the boulder number. This should be because that, in two channels having different widths, the rates of channel widths reduced by boulders are different although boulder numbers are same. Our findings on LW load varying with physical factors (i.e., interaction of boulder number and channel width) along the stream corridor suggest understanding for longitudinal continuum of hydrogeomorphic and ecologic characteristics in stream environments, and these should be carefully applied into the erosion control works for systematic watershed management and subsequent disaster prevention.

Prediction of Spring Flowering Timing in Forested Area in 2023 (산림지역에서의 2023년 봄철 꽃나무 개화시기 예측)

  • Jihee Seo;Sukyung Kim;Hyun Seok Kim;Junghwa Chun;Myoungsoo Won;Keunchang Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • Changes in flowering time due to weather fluctuations impact plant growth and ecosystem dynamics. Accurate prediction of flowering timing is crucial for effective forest ecosystem management. This study uses a process-based model to predict flowering timing in 2023 for five major tree species in Korean forests. Models are developed based on nine years (2009-2017) of flowering data for Abeliophyllum distichum, Robinia pseudoacacia, Rhododendron schlippenbachii, Rhododendron yedoense f. poukhanense, and Sorbus commixta, distributed across 28 regions in the country, including mountains. Weather data from the Automatic Mountain Meteorology Observation System (AMOS) and the Korea Meteorological Administration (KMA) are utilized as inputs for the models. The Single Triangle Degree Days (STDD) and Growing Degree Days (GDD) models, known for their superior performance, are employed to predict flowering dates. Daily temperature readings at a 1 km spatial resolution are obtained by merging AMOS and KMA data. To improve prediction accuracy nationwide, random forest machine learning is used to generate region-specific correction coefficients. Applying these coefficients results in minimal prediction errors, particularly for Abeliophyllum distichum, Robinia pseudoacacia, and Rhododendron schlippenbachii, with root mean square errors (RMSEs) of 1.2, 0.6, and 1.2 days, respectively. Model performance is evaluated using ten random sampling tests per species, selecting the model with the highest R2. The models with applied correction coefficients achieve R2 values ranging from 0.07 to 0.7, except for Sorbus commixta, and exhibit a final explanatory power of 0.75-0.9. This study provides valuable insights into seasonal changes in plant phenology, aiding in identifying honey harvesting seasons affected by abnormal weather conditions, such as those of Robinia pseudoacacia. Detailed information on flowering timing for various plant species and regions enhances understanding of the climate-plant phenology relationship.

Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm (음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지)

  • Hyeong-Gyu Kim;Joongbin Lim;Kyoung-Min Kim;Myoungsoo Won;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.637-654
    • /
    • 2023
  • In recent years, the number of users has been increasing with the rapid development of earth observation satellites. In response, the Committee on Earth Observation Satellites (CEOS) has been striving to provide user-friendly satellite images by introducing the concept of Analysis Ready Data (ARD) and defining its requirements as CEOS ARD for Land (CARD4L). In ARD, a mask called an Unusable Data Mask (UDM), identifying unnecessary pixels for land analysis, should be provided with a satellite image. UDMs include clouds, cloud shadows, terrain shadows, etc. Terrain shadows are generated in mountainous terrain with large terrain relief, and these areas cause errors in analysis due to their low radiation intensity. previous research on terrain shadow detection focused on detecting terrain shadow pixels to correct terrain shadows. However, this should be replaced by the terrain correction method. Therefore, there is a need to expand the purpose of terrain shadow detection. In this study, to utilize CAS500-4 for forest and agriculture analysis, we extended the scope of the terrain shadow detection to shaded areas. This paper aims to analyze the potential for terrain shadow detection to make a terrain shadow mask for South and North Korea. To detect terrain shadows, we used a Hill-shade algorithm that utilizes the position of the sun and a surface's derivatives, such as slope and aspect. Using RapidEye images with a spatial resolution of 5 meters and Sentinel-2 images with a spatial resolution of 10 meters over the Korean Peninsula, the optimal threshold for shadow determination was confirmed by comparing them with the ground truth. The optimal threshold was used to perform terrain shadow detection, and the results were analyzed. As a qualitative result, it was confirmed that the shape was similar to the ground truth as a whole. In addition, it was confirmed that most of the F1 scores were between 0.8 and 0.94 for all images tested. Based on the results of this study, it was confirmed that automatic terrain shadow detection was well performed throughout the Korean Peninsula.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.