• Title/Summary/Keyword: 최적신호주기

Search Result 85, Processing Time 0.022 seconds

Optimization of Tube Voltage according to Patient's Body Type during Limb examination in Digital X-ray Equipment (디지털 엑스선 장비의 사지 검사 시 환자 체형에 따른 관전압 최적화)

  • Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.379-385
    • /
    • 2017
  • This study identifies the optimal tube voltages depending on the changes in the patient's body type for limb tests using a digital radiography (DR) system. For the upper-limp test, the dose area product (DAP) was fixed at $5.06dGy{\ast} cm^2$, and for the lower-limb test, the DAP was fixed at $5.04dGy{\ast} cm^2$. Afterwards, the tube voltage was changed to four different stages and the images were taken three times at each stage. The thickness of the limbs was increased by 10 mm to 30 mm to change in the patient's body type. For a quantitative evaluation, Image J was used to calculate the contrast to noise ratio (CNR) and signal to noise ratio (SNR) among the four groups, according to the tube voltage. For statistical testing, the statistically significant differences were analyzed through the Kruskal-Wallis test at a 95% confidence level. For the qualitative analysis of the images, the pre-determined items were evaluated based on a 5-point Likert scale. In both upper-limb and lower-limb tests, the more the tube voltage increased, the more the CNR and SNR of the images decreased. The test on the changes depending on the patient's body shape showed that the more the thickness increased, the more the CNR and SNR decreased. In the qualitative evaluation on the upper limbs, the more the tube voltage increased, the more score increased to 4.6 at the maximum of 55kV and 3.6 at 40kV, respectively. The mean score for the lower limbs was 4.4, regardless of the tube voltage. The more either the upper or lower limbs got thicker, the more the score generally decreased. The score of the upper limps sharply dropped at 40kV, whereas that of the lower limps sharply dropped at 50kV. For patients with a standard thickness, the optimized images can be obtained when taken at 45kV for the upper limbs, and at 50kV for the lower limbs. However, when the thickness of the patient's limbs increases, it is best to set the tube voltage at 50 kV for the upper limbs and at 55 kV for the lower limbs.

S-Band 300-W GaN HEMT Harmonic-Tuned Internally-Matched Power Amplifier (S-대역 300 W급 GaN HEMT 고조파 튜닝 내부 정합 전력증폭기)

  • Kang, Hyun-Seok;Lee, Ik-Joon;Bae, Kyung-Tae;Kim, Seil;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.290-298
    • /
    • 2018
  • Herein, an S-band internally-matched power amplifier that shows a power capability of 300 W in a Long Term Evolution(LTE) band 7 is designed and fabricated using a CGHV40320D GaN HEMT from Wolfspeed. Based on the nonlinear model, the optimum source and load impedance are extracted from the source-pull and load-pull simulations at the fundamental and harmonic frequencies, and the harmonic impedance tuning circuits are implemented inside a ceramic package. The internally matched power amplifier, which is fabricated using a thin-film substrate with a high relative permittivity of 40 and an RF35TC PCB substrate, is measured at the pulsed condition with a pulse period of 1 ms and a duty cycle of 10%. The measured results show a maximum output power of 257~323 W, a drain efficiency of 64~71%, and a power gain of 11.5~14.0 dB at 2.62~2.69 GHz. The LTE-based measurement shows a drain efficiency of 42~49% and an ACLR of less than -30 dBc(excluding 2.62 GHz) at an average power of 79 W.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Timing Driven Analytic Placement for FPGAs (타이밍 구동 FPGA 분석적 배치)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.21-28
    • /
    • 2017
  • Practical models for FPGA architectures which include performance- and/or density-enhancing components such as carry chains, wide function multiplexers, and memory/multiplier blocks are being applied to academic FPGA placement tools which used to rely on simple imaginary models. Previously the techniques such as pre-packing and multi-layer density analysis are proposed to remedy issues related to such practical models, and the wire length is effectively minimized during initial analytic placement. Since timing should be optimized rather than wire length, most previous work takes into account the timing constraints. However, instead of the initial analytic placement, the timing-driven techniques are mostly applied to subsequent steps such as placement legalization and iterative improvement. This paper incorporates the timing driven techniques, which check if the placement meets the timing constraints given in the standard SDC format, and minimize the detected violations, with the existing analytic placer which implements pre-packing and multi-layer density analysis. First of all, a static timing analyzer has been used to check the timing of the wire-length minimized placement results. In order to minimize the detected violations, a function to minimize the largest arrival time at end points is added to the objective function of the analytic placer. Since each clock has a different period, the function is proposed to be evaluated for each clock, and added to the objective function. Since this function can unnecessarily reduce the unviolated paths, a new function which calculates and minimizes the largest negative slack at end points is also proposed, and compared. Since the existing legalization which is non-timing driven is used before the timing analysis, any improvement on timing is entirely due to the functions added to the objective function. The experiments on twelve industrial examples show that the minimum arrival time function improves the worst negative slack by 15% on average whereas the minimum worst negative slack function improves the negative slacks by additional 6% on average.

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.