• Title/Summary/Keyword: 최적신뢰성 설계

Search Result 412, Processing Time 0.033 seconds

Reliability Based & Robust Design Optimization of Airfoils for the Wind Turbine Blade Considering Operating Uncertainty (운용조건의 불확실성을 고려한 풍력터빈 블레이드용 익형의 신뢰성 기반 강건 최적 설계)

  • Jung, Ji-Hun;Park, Kyung-Hyun;Jun, Sang-Ook;Kang, Hyung-Min;Lee, Dong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.427-430
    • /
    • 2009
  • 풍력 터빈 블레이드용 익형의 경우 운용 조건에서 높은 양항비를 가지도록 설계되나 풍속, 풍향의 변동에 의해 운용조건에 변화가 발생할 경우 성능의 저하가 발생할 수 있다. 따라서 운용조건의 변동이 발생하더라도 공력 성능이 크게 변하지 않는 익형이 요구된다. 본 연구에서는 이러한 운용조건의 불확실성을 고려하여 풍력 터빈 블레이드용 익형의 신뢰성 기반 강건 최적 설계를 수행하였다. 익형 설계를 위해서 여러 익형 형상 변수들을 고려할 수 있는 익형 모델링 함수를 정의하였고 기저형상으로는 NREL에서 개발한 S809 익형을 사용하였다.

  • PDF

Development of Load Factors-Based Analysis Model of Optimum Reliability (하중계수에 기초한 최적신뢰성의 해석모델 개발)

  • 이증반;신형우
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.113-124
    • /
    • 1992
  • This study proposes a Load Factors-based Analysis Model of Optimum Reliability for the High way bridge, which is most common type of structural design, and also proposes the theoretical bases of optimum nominal safety factors as well as optimum load and resistance factors based on the expected total cost minimization. Major 2nd moment reliability analysis and design theories including both MFOSM(Mean First Order 2nd Moment) Methods and AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Lind-Hasofer's approximate and an approximate Log-normal type reliability for mula are well suited for the proposed optimum reliability study.

  • PDF

A Study on the Optimized Design of Structures Considering Reliability Analysis (신뢰성을 고려한 구조물의 최적설계에 관한 연구)

  • Park, Hyun-Jung;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.217-224
    • /
    • 2003
  • The objective of this paper is to suggest the technique of program to perform structural optimization design after reliability analysis to consider the uncertainties of structural reponses. AFOSM method is used for reliability analysis then, structural optimization design is developed for 10-bar truss and 3 span 10 stories planar frame model is subject to reliability indices and probability of failure by reliability analysis. SQP method is used for optimization design method, this method has many attractions. As a result of analyzing with having and not having constraints and uncertainty, the minimum weight of truss and planar frame increased respectively 20.92% and average 8.08%.

The Study of Reliability Based Optimization Design for Connection (불확실성을 고려한 접합부의 최적설계에 관한 연구)

  • Shin, Soo-Mi;Yun, Hyug-Gee;Kim, Hye-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.26-32
    • /
    • 2016
  • Usually, there are many uncertainties regarding the error of an assumed load, material properties, member size, and structure analysis in a structure, and it may have a direct influence on the qualities of optimal design of structures. Probabilistic analysis has developed rapidly into a desirable process and structural reliability analysis is an increasingly important tool that assists engineers to consider uncertainties during the design, construction and life of a structure to calculate its probability of failure. This study deals with the applications of two optimization techniques to solve the reliability-based optimization problem of structures. The reliability-based optimization problem was formulated as a minimization of the structural volume subject to the constraints on the values of componential reliability index determined by the AFOSM approach. This presented method may be a useful tool for the reliability-based design optimization of structures.

A study on reliability based design optimization of six-axis wheel force transducer (6축 바퀴동력계의 신뢰성 기반 형상최적설계에 관한 연구)

  • Gang, Jin-Hyuk;Park, Yong-Mook;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.93-96
    • /
    • 2009
  • 바퀴동력계는 차량에 지면으로부터 전달되는 힘과 모멘트를 측정하는 로드셀이다. 본 연구에서 개발한 바퀴동력계는 스트레인 게이지식 로드셀로써 이러한 로드셀을 설계하는데 있어서 몇가지 고려해야 하는 사항이 있다. 우선 스트레인 게이지를 부착하기 쉬운 구조가 되어야 하고 조립시의 오차를 줄이기 위하여 한 몸체로 제작되어야 한다. 이와 동시에 가장 중요하게 고려되어야 하는 인자로 감도를 위해 재료가 허용하는 응력내에서 되도록 큰 변형률이 발생해야 하고 상호 간섭 오차가 발생하지 말아야 한다. 본 연구에서는 수식을 이용하여 이론적으로 상호 간섭 오차를 0으로 만들 수 있었다. 또한 설계 변수 및 재료 물성치의 산포를 고려한 신뢰성 기반 최적설계 기법을 사용하였으며, 이를 통해 허용 응력하에서 최대의 변형률이 발생하는 바퀴동력계를 설계하였다.

  • PDF

Advance Probabilistic Design and Reliability-Based Design Optimization for Composite Sandwich Structure (복합재 샌드위치 구조의 개선된 확률론적 설계 및 신뢰성 기반 최적설계)

  • Lee, Seokje;Kim, In-Gul;Cho, Wooje;Shul, Changwon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • Composite sandwich structure can improve the specific bending stiffness significantly and save the weight nearly 30 percent compared with the composite laminates. However, it has more inherent uncertainties of the material property caused by manufacturing process than metals. Therefore, the reliability-based probabilistic design approach is required. In this paper, the PMS(Probabilistic Margin of Safety) is calculated for the simplified fuselage structure made of composite sandwich to provide the probabilistic reasonable evidence that the classical design method based on the safety factor cannot ensure the structural safety. In this phase, the probability density function estimated by CMCS(Crude Monte-Carlo Simulation) is used. Furthermore, the RBDO(Reliability-Based Design Optimization) under the probabilistic constraint are performed, and the RBDO-MPDF(RBDO by Moving Probability Density Function) is proposed for an efficient computation. The examined results in this paper can be helpful for advanced design techniques to ensure the reliability of structures under the uncertainty and computationally inexpensive RBDO methods.

Study on Feasibility of Applying Function Approximation Moment Method to Achieve Reliability-Based Design Optimization (함수근사모멘트방법의 신뢰도 기반 최적설계에 적용 타당성에 대한 연구)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • Robust optimization or reliability-based design optimization are some of the methodologies that are employed to take into account the uncertainties of a system at the design stage. For applying such methodologies to solve industrial problems, accurate and efficient methods for estimating statistical moments and failure probability are required, and further, the results of sensitivity analysis, which is needed for searching direction during the optimization process, should also be accurate. The aim of this study is to employ the function approximation moment method into the sensitivity analysis formulation, which is expressed as an integral form, to verify the accuracy of the sensitivity results, and to solve a typical problem of reliability-based design optimization. These results are compared with those of other moment methods, and the feasibility of the function approximation moment method is verified. The sensitivity analysis formula with integral form is the efficient formulation for evaluating sensitivity because any additional function calculation is not needed provided the failure probability or statistical moments are calculated.

Modified Single Loop Single Vector Method for Stability and Efficiency Improvement in Reliability-Based Design Optimization (신뢰성기반 최적설계에서 수치적 안정성과 효율성의 개선을 위해 수정된 Single Loop Single Vector 방법)

  • Kim, Bong-Jae;Lee, Jae-Ohk;Yang, Young-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • SLSV (single loop single vector) method is to solve the excessive computational cost problem in RBDO (reliability-based design optimization) by decoupling the nested iteration loops. However, the practical use of SLSV method to RBDO case is limited by the instability or inaccuracy of the method since it often diverges or converges to a wrong solution. Thus, in this paper, a new modified SLSV method is proposed. This method improves its convergence capability effectively by utilizing Inactive Design and Active MPP Design together with modified HMV (hybrid mean value) method. The usefulness of the proposed method is also verified through numerical examples.

A Study on the Reliability-Based Optimum Design of Reinforced Concrete Frames (철근(鐵筋)콘크리트 뼈대구조(構造) 신뢰성(信賴性) 최적설계(最適設計)에 관한 연구(硏究))

  • Kim, Kee Dae;Yang, Chang Hyun;Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.57-64
    • /
    • 1989
  • This study presents a reliability-based optimum design of reinforced concrete frames, in which the AFOSM and SOSM methods are applied for the evaluation of the failure probabilities, and the sequential linear programming method is used as a practical approach to the system optimization. One-story two-bay reinforced concrete frame is chosen for the numerical illustration of the proposed reliability-based optimum design. As a result, it is found that the proposed procedure for the reliability-based optimization of RC frames could provide the accurate estimation of the optimal level of safety, and appears applicable to real structures with reasonable complexity. It is shown in the paper that the probability distributions of the basic random variables and the uncertainties of the applied loadings and material strengths may have great effect on the optimum design, but the AFOSM and SOSM methods do not show significant discrepancy in the optimum design results, but the former appears more realistic and time saving than the latter for this specific study.

  • PDF

Reliability Based Design Optimization of the Softwater Pressure Tank Considering Temperature Effect (온도영향을 고려한 연수기 압력탱크의 신뢰성 최적설계)

  • Bae Chul-Ho;Kim Mun-Seong;Suh Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1458-1466
    • /
    • 2004
  • Deterministic optimum designs that are obtained without consideration of uncertainties could lead to unrealiable designs. Such deterministic engineering optimization tends to promote the structural system with less reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. This paper proposes the reliability based design optimization technique fur apressure tank considering temperature effect. This paper presents an efficient and stable reliability based design optimization method by using the advanced first order second moment method, which evaluates a probabilistic constraint for more accuracy. In addition, the response surface method is utilized to approximate the performance functions describing the system characteristics in the reliability based design optimization procedure.