• 제목/요약/키워드: 최적설계변수

Search Result 1,245, Processing Time 0.027 seconds

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.

An Analysis of Design Parameters and Optimal Design for Anchors with Wide CFRP Plate (대형 CFRP Plate용 정착구의 설계요소분석 및 최적설계)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.102-112
    • /
    • 2020
  • In this study, in order to design a wedge-type anchor that can hold an wide carbon plate with a width of 100 mm or more that can be used in a bridge structure, the mechanical behaviors are evaluated based on the main design variables such as the angle of the wedge and the coefficient of friction between the guide and the wedge. The stress state of the carbon plate was calculated by numerical analysis method for each design variable, and the performance of the anchor in the critical state was evaluated according to the failure criteria for composite material, and the optimal design specifications of the anchor were determined based on numerical results. The performance of the optimally designed anchor was verified through actual experiments, and the results of this study are considered to be useful for the optimal design of the CFRP plate anchor to reinforce large structures.

Optimum Design of Dual Orifice Fuel Nozzle (이중 오리피스 연료 노즐 최적설계)

  • Lim, O-Kaung;Choi, Eun-Ho;Kim, Sung-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.407-416
    • /
    • 2007
  • Fuel spray nozzle has a critical effect on combustion characteristics. Mass flow rate and SMD(sauter mean diameter) were selected as design variables by using the experiment data of various types of duplex fuel nozzles for the swirl atomizers. The sensitivity of each design variable on the mass flow rate and SMD was analyzed and the uniformity of mass flow rate was investigated through the shape optimization of duel-orifice-type swirl atomizers. The design variables that have a little effect on the optimum design were excluded using the DOE(design of experiments) method, which enabled the optimization of sensitive design variables on mass flow rate and limit tolerance. The SMD of the research spray nozzle that was used in this study was found to be most similar to that of the calculation results using the Jasuja's SMD relationship. This study showed the specific characteristics of duel orifice type swirl atomizers and the optimization of these kinds of nozzle. This study provided the optimization design of mass flow rate and its allowable tolerance.

Numerical Optimization of Offshore Wind Turbine Blade for Domestic Use (한국형 해상 풍력터빈 블레이드 최적설계 알고리즘 연구)

  • Lee Ki-Hak;Kim tae-Yoon;Kim Kyu-Hong;Lee Kyung-Tae;Lee Dong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.47-50
    • /
    • 2005
  • 본 연구의 목적은 차세대 대체에너지로 각광받는 풍력발전 중에서 육상발전보다 여러 가지 이점이 있는 해상에서의 한국형 풍력터빈 블레이드의 최적 형상을 위 한 알고리즘을 구현하는 것이다. 풍력터빈 블레이드에서 깃익형의 공기 역학적 특성은 매우 중요한 사항이다. 이를 위해서 익형 성능예측에 층류에서 난류로의 천이과정을 포함하는 XFOIL을 이용하여 블레이드 익형 단면의 양력과 항력 분포를 해석하였다. 첫 번째 수준의 설계변수는 운용범위내의 바람의 속도와 블레이드 지름, 축 회전수이며, 각 단면에서의 비틀림각과 시위길이는 두 번째 수준의 설계 변수이다. 운용범위 내의 각 설계점에서 익형의 공력 변수들과 최소에 너지손실 조건을 이용하여 시위길이와 피치각 분포를 최적화하였다. 각각의 설계점에서 결과를 바탕으로 풍력발전의 설계 운용범위에서 반응면을 구성하고 구배최적화 기법을 통해 요구동력의 제약함수를 만족하고 효율을 최대로 하는 블레이드 형상을 구현하였다. 최적형상에 대해 탈설계점 해석을 수행하여 그 성능을 구하였다.

  • PDF

Optimal Design of Ladder Type SAW Filters (사다리형 SAW 필터의 최적 설계)

  • 노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.16-24
    • /
    • 1999
  • Design of SAW ladder filters has been performed by a rather trial and error method, that is, by modifying the design variables step by step until designed performance of the filter satisfies given specifications. In this work, optimal design method has been developed that automatically determines the detailed pattern of the SAW ladder filter to meet the specification once desired performance is given. As a first step for the development, the analysis tool for the SAW ladder filter has been produced by means of the Smith equivalent circuit analysis technique, and its validity has been verified through comparison of its calculation result with experimental data. With the analysis tool, we have investigated the performance variation of the filter with the change of its design factors, and the result has led to the optimal design algorithm. Validity and efficiency of the algorithm has been checked through test design of several SAW ladder filter samples on the market.

  • PDF

Design of Ternary Logic Circuits Based on Reed-Muller Expansions (Reed-Muller 전개식에 의한 3치 논리회로의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.491-499
    • /
    • 2007
  • In this paper, we present a design method of the ternary logic circuits based on Reed-Muller expansions. The design method of the presented ternary logic circuits checks the degree of each variable for the coefficients of Reed-Holler Expansions(RME) and determines the order of optimal control input variables that minimize the number of Reed-Muller Expansions modules. The order of optimal control input variables is utilized the computation of circuit cost matrix. The ternary logic circuits of the minimized tree structures to be constructed by RME modules based on Reed-Muller Expansions are realized using the computation results of its circuit cost matrix. This method is only performed under unit time in order to search for the optimal control input variables. Also, this method is able to be programmed by computer and the run time on programming is $3^n$.

Optimization of TEM Cell Using Evolution Strategy (진화 알고리즘을 이용한 TEM CELL의 최적설계)

  • Chae Soo-Jeong;Kang No-Weon;Jung Hyun-Kyo;Choi Kyung
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.10-12
    • /
    • 2002
  • 본 논문에서는 TEM Cell 의 최적 설계방법을 제안한다. 임피던스 부정합을 최소화 시키기 위해 Cell 내부의 특성 임피던스를 $50{\Omega}$으로 유지하며, 동시에 중심 도체판(Septum)의 길이와 도체판 날개(winglet)의 각을 변화 시킴으로써 내부 전자파의 균일도(Uniformity)를 최대로 하는 TEM Cell의 최적설계 방법을 제안하며 (1+1)ES를 적용하여 시험영역을 최대로 하는 최적 설계 변수들을 제시한다.

  • PDF

퍼지제어 시스템을 위한 마이크로컴퓨터 지원설계

  • 주해호;이재원;박창선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.187-191
    • /
    • 1992
  • 본 연구에서 퍼지제어 시스템 설계를 위한 마이크로 컴퓨터 지원 설계 기법과 프로그램 FCS 를 개발하였다. 이 프로그램은 IBM-PC 호환기종 (80386,804860) 에 사용되는 Turbo-C 언어를 사용하였고, Borland C $^{++}$ 2.0 컴파일러를 사용하였다. 제어시스템의 각 요소를 모듈화 하여 동특성을 차분 방정식으로 표시하여 사용자가 쉽게 대치할 수 있도록 서브루틴화 하였다. 퍼지제어 규칙의 최적조건, 퍼지 입출력 변수의 최적조건, D/A 및 A/D 변환기의 최적 비트수, 최적 샘플링 시간을 결정 할 수 있다. 공기예열 시스템을 예로서 이 프로그램을 이용하여 설계하였다.

A Study on the Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure of Ship (선박의 보강판 구조물의 동특성의 최적 변경법에 관한 연구)

  • 박성현;박석주;고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • The purpose of this study is the optimum modification of dynamic characteristics of stiffened plate structure. In the method of the optimization, finite element method(FEM), sensitivity analysis and optimum structural modification method are used. To begin with, using FEM, the dynamic characteristics of stiffened plate structure is analyzed. Next, rate of change of dynamic characteristics by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of plate and cross section moment become a design variable. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure.

  • PDF

A Practical Procedure for the Design Optimization of Pile-type Substructure in a Mooring Dolphin (계류돌핀의 말뚝형 하부구조에 대한 실용적 설계 최적화 과정)

  • Ryu, Yeon-Sun;Lee, Nary;Kim, Jeong-Tae;Cho, Hyun-Ma
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.285-294
    • /
    • 2000
  • In this paper, a practical procedure for the design optimization of tubular-steel-pile-type substructure in a mooring dolphin is investigated and numerically evaluated. In the finite-dimensional optimum design formulation, geometry and cross-sectional shapes of classified group of piles are identified as design variables. The design objective is the total weight of piles, and the design constraints on stresses, penetration depth, and size limits are imposed. Several classes of practical design alternatives are sought through the linking and fixing of design variables. Among the available numerical optimization codes, both PLBA program and DNCONF subroutine in IMSL library are used. They are based on SQP algorithm and relatively easy to get. A dolphin of numerical example has 20 tubular steel piles, 4 vertical and 16 inclined. Optimum designs for different cases are successfully obtained for the practical purpose.

  • PDF