• Title/Summary/Keyword: 최적설계변수

Search Result 1,248, Processing Time 0.031 seconds

Optimization of Wireless Power Transfer System in On-line Electric Vehicle (온라인 전기자동차의 무선전력전송 시스템 최적화)

  • Ahn, Seung-Young;Lee, Ju-Yong;Cho, Dong-Ho;Kim, Joung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1-2
    • /
    • 2011
  • 온라인 전기자동차에 적용된 무선전력전송 시스템의 자기장 설계 기술은 전송되는 전력의 용량, 효율, 누설자기장 세기 등 전기적인 성능변수들을 결정하는 핵심 기술이다. 최대의 전력용랑과 효율을 만들어내면서 동시에 누설 자기장에 대한 전파법의 규격을 만족시켜야 한다. 이를 위해 자기장의 형상화에 영향을 주는 다양한 설계변수를 찾아내고, 변수들의 최적화에 대한 체계적인 접근이 필요한 시점이다. 본 논문에서는 온라인 전기자동차의 자기장 설계에 영향을 주는 설계변수의 특성과, 성능변수에 미치는 영향을 분석하고, 최적의 성능변수를 만들어 내기 위한 방법을 제시한다.

  • PDF

Structural Optimization of Variable Swash Plate for Automotive Compressor Using Orthogonal Polynomials (직교다항식을 이용한 자동차 압축기용 가변 사판의 구조최적설계)

  • Baek, Seok-Heum;Kim, Hyun-Sung;Han, Dong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1273-1279
    • /
    • 2011
  • The variable-swash-plate compressor has recently been adopted as a vehicle compressor to improve fuel efficiency. The rotation torque in the variable-swash-plate compressor and the pressure-affected piston have a great influence on the swash-plate design and deformation. This paper suggests the optimal configuration design by using Chebyshev orthogonal polynomial and optimization techniques. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and response surface optimization, are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable in swash plate and explain the optimal solution, the usefulness for satisfying the constraints of maximum stress and deformation.

Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems (비선형계획법에서 목적함수의 상한함수를 이용한 강건최적설계)

  • Lee, Se Jung;Park, Gyung Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.535-543
    • /
    • 2014
  • In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.

외부댐핑이 구름베어링-회전축계의 진동특성에 미치는 영향

  • 장달식;윤석철;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1986.11a
    • /
    • pp.42-46
    • /
    • 1986
  • 회전축계가 위험한 공진 또는 불안한 상태를 나타내지 않고 조용하고 안정된 운전상태를 유지하려는 목적은 축의 휨강성, 몸체형상, 베어링의 크기 및 형상과 같은 설계변수를 최적화하는 것으로 이루어질 수 없는 경우가 빈번하다. 이런 경우에는 베어링 외부에 작용하는 "외부댐핑"을 이용하여 진동문제를 근본적으로 개선할 수 있다. 이를 위하여 베어링 외부에 별도로 설계한 스프링과 댐퍼를 설치한다. 본 연구에서는 윤활이론에 따라 명확히 계산되고 그 신빙성이 실험적으로 검증된 "동압유막 댐퍼"의 감쇄계수를 이용하여 외부댐핑을 갖는 회전축-구름베어링\ulcorner와 회전축-저어널 베어링계의 진동특성을 해석하고 회전축-구름베어링계의 실험적 모델을 제시하고자한다. 또한 해석결과와 실험을 토대로 회전축계의 진동특성에 미치는 특성수 및 설계변수를 명확히 도출하여 동특성을 고려한 회전축계의 최적 설계에 기여하고자 한다.축계의 최적 설계에 기여하고자 한다.

  • PDF

Multi-level Optimization for Orthotropic Steel Deck Bridges (강상판교의 다단계 최적설계)

  • 조효남;정지승;민대홍
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.237-247
    • /
    • 2001
  • 강상판교는 부재수가 많고 구조적 거동이 복잡하여 재래적인 단일수준 (CSL) 알고리즘을 이용하여 최적화하는 것이 매우 어렵기 때문에 본 연구에서는 강상판교를 효율적으로 최적화하기 위해 다단계 최적설계 (MLDS) 알고리즘이 제안되었다. 강상판교를 주형과 강상판으로 나누기 위해 등위법이 사용되었고, 시스템 최적화를 위하여 설계 변수를 줄이는 분해법이 사용되었다. 효율적인 최적설계를 위해 다단계 최적설계 알고리즘은 제약조건 소거기법(Constraint Deletion)과 응력 재해석 같은 근사화 기법을 도입하였다. 변위해석을 위한 제약조건 소거기법은 교량의 최적화에 효율적인 것으로 검증되었고, 제안된 응력 재해석 기법 또한 설계민감도 해석을 필요로 하지 않으므로 매우 효율적이다. MLDS 알고리즘의 적용성과 강건성은 다양한 수치예제를 사용하여 기존의 단일수준 알고리즘과 비교하였다.

  • PDF

Effects of the design variables and their constraints on the stage performance of an axial flow turbine (축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향)

  • 박호동;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2109-2124
    • /
    • 1991
  • A simulation program is developed to analyse the performance of an axial flow turbine stage based on the meanline prediction method. The gradient projection method is utilized to minimize the aerodynamic losses under the specified constraints on such as flow coefficient, total pressure ratio, stage power and blade loading coefficient. After obtaining the optimum point for minimizing the stage loss, a sensitivity analysis is carried out ground the optimum point to find the effects of the design variables and the design constraints on the stage performance. The result of the senitivity analysis under a constant blade loading coefficient shows that the total loss is more sensitive to the mean diameter, the absolute flow angle at nozzle outlet, the relative flow angle at rotor outlet and the axial mean velocity compared to the chords and the pitches. Moreover, the design constraints on the degree of reaction at root and the blade length-to-diameter ratio are found to be most influencial on the maximization of the overall aerodynamic efficiency.

Optimal Supersonic Diffuser Design of Integrated Rocket Ramjet Engine (IRR형 Ramjet Intake 초음속 확산부 형상 최적설계)

  • 민병영;이재우;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • Optimal supersonic diffuser shape of integrated rocket ramjet engine was derived which maximizes the total pressure recovery. Mass flux is considered as a design constraint and the second oblique shock angle of the external ramp, the cowl-lip angle and the throat area are selected as design variables. Refined response surface method through design space transformation technique was developed and employed, and high confidence level of the regression model could be obtained. Genetic algorithm was implemented for both system optimizer and subspace regression model optimization. Virtual nozzle was located at the end of throat to adjust the back pressure. With only 20 aerodynamic analyses, optimal supersonic diffuser shape which has 14% improved total pressure recovery characteristics was successfully designed.

Optimal Weight Design of Steel Structures Using Adaptive Simulated Annealing Algorithm (ASA알고리즘을 이용한 강구조물의 최적 중량 설계)

  • Bae, Jun-Seo;Hong, Seong-Uk;Cho, Young-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.125-132
    • /
    • 2008
  • Structural optimization is widely adopted in the design of structures with the development of computer aided design and computer technique recently. By applying the structural optimization in the last decades, designers have gained the design scheme of structures more feasibly and easily. In this paper, an optimal design of one 30-story high rise steel structure is performed considering material non-linearity. Based on finite element analysis and adaptive simulated annealing algorithm, the optimal weight of structure is derived under constraints of allowable yield stress, shear stress and serviceability.

Optimal Design of Laminated Stiffened Composite Structures using a parallel micro Genetic Algorithm (병렬 마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계)

  • Yi, Moo-Keun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.30-39
    • /
    • 2008
  • In this paper, a parallel micro genetic algorithm was utilized in the optimal design of composite structures instead of a conventional genetic algorithm(SGA). Micro genetic algorithm searches the optimal design variables with only 5 individuals. The diversities from the nominal convergence and the re-initialization processes make micro genetic algorithm to find out the optimums with such a small population size. Two different composite structure optimization problems were proposed to confirm the efficiency of micro genetic algorithm compared with SGA. The results showed that micro genetic algorithm can get the solutions of the same level of SGA while reducing the calculation costs up to 70% of SGA. The composite laminated structure optimization under the load uncertainty was conducted using micro genetic algorithm. The result revealed that the design variables regarding the load uncertainty are less sensitive to load variation than that of fixed applied load. From the above-mentioned results, we confirmed micro genetic algorithm as a optimization method of composite structures is efficient.

Structural Design Optimization of Lightweight Offshore Helidecks Using a Genetic Algorithm and AISC Standard Sections (유전 알고리듬 및 AISC 표준 단면을 사용한 경량화 헬리데크 구조 최적설계)

  • Sim, Kichan;Kim, Byungmo;Kim, Chanyeong;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.383-390
    • /
    • 2019
  • A helideck is one of the essential structures in offshore platforms for the transportation of goods and operating personnel between land and offshore sites. As such, it should be carefully designed and installed for the safety of the offshore platform. In this study, a structural design optimization method for a lightweight offshore helideck is developed based on a genetic algorithm and an attainable design set concept. A helideck consists of several types of structural members such as plates, girders, stiffeners, trusses, and support elements, and the dimensions of these members are typically pre-defined by manufacturers. Therefore, design sets are defined by collecting the standard section data for these members from the American Institute of Steel Construction (AISC), and integer section labels are assigned as design variables in the genetic algorithm. The objective is to minimize the total weight of the offshore helideck while satisfying the maximum allowable stress criterion under various loading conditions including self-weight, wind direction, landing position, and landing condition. In addition, the unity check process is also utilized for additional verification of structural safety against buckling failure of the helideck.