• Title/Summary/Keyword: 최소차수

Search Result 105, Processing Time 0.031 seconds

Dynamic Algorithm for Solid Problems using MLS Difference Method (MLS 차분법을 이용한 고체역학 문제의 동적해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • The MLS(Moving Least Squares) Difference Method is a numerical scheme that combines the MLS method of Meshfree method and Taylor expansion involving not numerical quadrature or mesh structure but only nodes. This paper presents an dynamic algorithm of MLS difference method for solving transient solid mechanics problems. The developed algorithm performs time integration by using Newmark method and directly discretizes strong forms. It is very convenient to increase the order of Taylor polynomial because derivative approximations are obtained by the Taylor series expanded by MLS method without real differentiation. The accuracy and efficiency of the dynamic algorithm are verified through numerical experiments. Numerical results converge very well to the closed-form solutions and show less oscillation and periodic error than FEM(Finite Element Method).

The comparison and the Analysis of the optical performances between the single and the symmetrical double DOE lenses (단매와 대칭 2매로 구성된 DOE 렌즈의 광학성능 비교 및 분석)

  • 이환선;임천석;조재홍
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.258-265
    • /
    • 2002
  • In this paper, we design single and symmetrical double lenses with DOE. The specifications are the following : Image area is 4.8 mm $\times$ 3.6 mm, F/# is 2.8 and the overall length (from first lens surface to image plane) is 6.8mm. After comparing the optical performance and characteristic values, we determine that symmetrical double lenses are superior to single lenses. Symmetrical double lenses have the merits of fewer zones, weaker flare, and smaller distortion than single lenses.

A Study on the Feedback Adaptive Algorithm and its Applications for Detecting Line Signals (주기 신호 검출을 위한 회귀적 적응 알고리즘 및 응용에 관한 연구)

  • 정해택;김중규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.4
    • /
    • pp.83-92
    • /
    • 1999
  • 본 논문에서는 Jue Chang 과 John R. Glover 가 1993년에 제안한 회귀적 적응 주기 신호 검출기[1]를 소개하고 이를 구현하기 위한 최적의 실시간 알고리즘을 제안하여 회귀적 주기 신호 검출기의 실용적인 응용 예를 제시하였다. 회귀적 적응 주기신호 검출기(FALE:Feedback Adaptive Line Enhancer)는 기존의 적응 주기 신호 검출기에 회귀 경로를 달아줌으로써, 필터 차수를 같게 했을 때 낮은 신호 대 잡음비 환경 하에서 더 높은 필터 이득과 더 낮은 추정 오차를 얻을 수 있다. 회귀 경로를 통해 들어오는 필터 출력 신호는 회귀 이득 상수 값에 따라 전체 시스템의 성능이 달라지므로 최적의 회귀 이득 상수를 찾아내는 것이 중요하며 이는 회귀 이득 상수를 변화시키며 최적의 결과값(최소 추정오차)을 유도하는 실험을 통해 얻을 수 있다. 한편, 이를 구현하는 문제에 있어서는 일잔 최적의 회귀 이득 상수 값이 정해지면 회귀 이득 상수가 초기 값으로부터 최적 값에 도달하는 변화율과 변화 유형이 시스템의 실시간 구현 및 성능에 중요한 영향을 미치게 된다. 본 논문에서는 실험을 통해 최적의 구현 알고리즘을 찾아냄으로써 Jue Chang 과 John R, Glover가 제시한 이론적인 수렴율과 수렴 성능을 유지하면서 실시간으로 동작하는 시스템을 구현하고 모의실험을 통한 성능분석 결과를 제시하였다.

  • PDF

The Four Color Algorithm (4-색 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • This paper proposes an algorithm that proves an NP-complete 4-color theorem by employing a linear time complexity where $O(n)$. The proposed algorithm accurately halves the vertex set V of the graph $G=(V_1,E_1)$ into the Maximum Independent Set (MIS) $\bar{C_1}$ and the Minimum Vertex Cover Set $C_1$. It then assigns the first color to $\bar{C_1}$ and the second to $\bar{C_2}$, which, along with $C_2$, is halved from the connected graph $G=(V_2,E_2)$, a reduced set of the remaining vertices. Subsequently, the third color is assigned to $\bar{C_3}$, which, along with $C_3$, is halved from the connected graph $G=(V_3,E_3)$, a further reduced set of the remaining vertices. Lastly, denoting $C_3$ as $\bar{C_4}$, the algorithm assigns the forth color to $\bar{C_4}$. The algorithm has successfully obtained the chromatic number ${\chi}(G)=4$ with 100% probability, when applied to two actual map and two planar graphs. The proposed "four color algorithm", therefore, could be employed as a general algorithm to determine four-color for planar graphs.

A Polynomial Time Algorithm for Vertex Coloring Problem (정점 색칠 문제의 다항시간 알고리즘)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.85-93
    • /
    • 2011
  • The Vertex Coloring Problem hasn't been solved in polynomial time, so this problem has been known as NP-complete. This paper suggests linear time algorithm for Vertex Coloring Problem (VCP). The proposed algorithm is based on assumption that we can't know a priori the minimum chromatic number ${\chi}(G)$=k for graph G=(V,E) This algorithm divides Vertices V of graph into two parts as independent sets $\overline{C}$ and cover set C, then assigns the color to $\overline{C}$. The element of independent sets $\overline{C}$ is a vertex ${\upsilon}$ that has minimum degree ${\delta}(G)$ and the elements of cover set C are the vertices ${\upsilon}$ that is adjacent to ${\upsilon}$. The reduced graph is divided into independent sets $\overline{C}$ and cover set C again until no edge is in a cover set C. As a result of experiments, this algorithm finds the ${\chi}(G)$=k perfectly for 26 Graphs that shows the number of selecting ${\upsilon}$ is less than the number of vertices n.

Time series analysis for Korean COVID-19 confirmed cases: HAR-TP-T model approach (한국 COVID-19 확진자 수에 대한 시계열 분석: HAR-TP-T 모형 접근법)

  • Yu, SeongMin;Hwang, Eunju
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.239-254
    • /
    • 2021
  • This paper studies time series analysis with estimation and forecasting for Korean COVID-19 confirmed cases, based on the approach of a heterogeneous autoregressive (HAR) model with two-piece t (TP-T) distributed errors. We consider HAR-TP-T time series models and suggest a step-by-step method to estimate HAR coefficients as well as TP-T distribution parameters. In our proposed step-by-step estimation, the ordinary least squares method is utilized to estimate the HAR coefficients while the maximum likelihood estimation (MLE) method is adopted to estimate the TP-T error parameters. A simulation study on the step-by-step method is conducted and it shows a good performance. For the empirical analysis on the Korean COVID-19 confirmed cases, estimates in the HAR-TP-T models of order p = 2, 3, 4 are computed along with a couple of selected lags, which include the optimal lags chosen by minimizing the mean squares errors of the models. The estimation results by our proposed method and the solely MLE are compared with some criteria rules. Our proposed step-by-step method outperforms the MLE in two aspects: mean squares error of the HAR model and mean squares difference between the TP-T residuals and their densities. Moreover, forecasting for the Korean COVID-19 confirmed cases is discussed with the optimally selected HAR-TP-T model. Mean absolute percentage error of one-step ahead out-of-sample forecasts is evaluated as 0.0953% in the proposed model. We conclude that our proposed HAR-TP-T time series model with optimally selected lags and its step-by-step estimation provide an accurate forecasting performance for the Korean COVID-19 confirmed cases.

Proof Algorithm of Erdös-Faber-Lovász Conjecture (Erdös-Faber-Lovász 추측 증명 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.269-276
    • /
    • 2015
  • This paper proves the Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture of the vertex coloring problem, which is so far unresolved. The Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture states that "the union of k copies of k-cliques intersecting in at most one vertex pairwise is k-chromatic." i.e., x(G)=k. In a bid to prove this conjecture, this paper employs a method in which it determines the number of intersecting vertices and that of cliques that intersect at one vertex so as to count a vertex of the minimum degree ${\delta}(G)$ in the Minimum Independent Set (MIS) if both the numbers are even and to count a vertex of the maximum degree ${\Delta}(G)$ in otherwise. As a result of this algorithm, the number of MIS obtained is x(G)=k. When applied to $K_k$-clique sum intersecting graphs wherein $3{\leq}k{\leq}8$, the proposed method has proved to be successful in obtaining x(G)=k in all of them. To conclude, the Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture implying that "the k-number of $K_k$-clique sum intersecting graph is k-chromatic" is proven.

Material Stress Fringe Constant Measurement of Specimen under Pure Bending Load by Use of Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 순수굽힘보 시편의 재료 응력 프린지 상수 측정)

  • Liu, Guan Yong;Kim, Myung Soo;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1387-1394
    • /
    • 2014
  • In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, ${\pi}/4$, ${\pi}/2$, and $3{\pi}/4$ radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material.

A study on the optimal reinforcement area for excavation of a small cross-section shield TBM tunnel in fault fracture zone through parameter analysis (매개변수 분석을 통한 단층파쇄대의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.261-275
    • /
    • 2020
  • When excavating a small cross-section tunnel in a fault fracture zone using the shield TBM method, there is a high possibility of excessive convergence and collapse. Appropriate ground reinforcement is required to minimize construction cost loss and trouble due to a fault fracture zone. In this study, the optimal reinforcement area was suggested and the surrounding ground behavior was investigated through numerical analysis using MIDAS GTS NX (Ver. 280). For the parameters, the width of the fault fracture zone, the existence of fault gouge, and the groundwater level and depth of cover were applied. As a result, when there is not fault gouge, the convergence and ground settlement are satisfied the standard when applying ground reinforcement by up to 0.5D. And, due to the high permeability coefficient, it is judged that it is necessary to apply 0.5D reinforcement. There is a fault gouge, it was possible to secure stability when applying ground reinforcement between the entire fault fracture zone from the top of the tunnel to 0.5D. And, because the groundwater discharge occurred within the standard value due to the fault gouge, reinforcement was unnecessary.

Analysis of Principal Stress Distribution Difference of Tensile Plate with Partial Through-hole (부분 관통 구멍이 있는 인장판의 주응력 분포 차이 해석)

  • Park, Sang Hyun;Kim, Young Chul;Kim, Myung Soo;Baek, Tae Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.437-444
    • /
    • 2017
  • Stress concentrations around discontinuities, such as a hole in cross section of a structural member, have great importance because the most materials failure around the region may be occurred. Stress on the point applied by concentrated load reaches much larger value than the average stress in structural member. In this paper, stress analysis was performed for the plate with a partial through-hole to find the difference of the principal stress distribution. The difference between maximum principal stress and minimum principal stress in photoelasticity is equal to the value obtained by multiplying the isochromatic fringe order by the fringe constant of the material divided by the distance through which the light passes, that is, the thickness of the specimen. Since the difference of principal stress is proportional to the photoelastic fringe order, the distribution of the principal stress difference by the finite element analysis can be compared with the photoelasticity experimental result. ANSYS Workbench, that is the finite element software, is used to compute the differences of principal stresses at the specific points on the measured lines. The computation values obtained by ANSYS are compared with the experimental measurements by photoelasticity, and two results are comparable to each other. In addition, the stress concentration factor is obtained using the stress distribution analyzed from the variation of hole depth. Stress concentration factor is increasing, as the depth of hole increase.