• Title/Summary/Keyword: 최소고유치

Search Result 4, Processing Time 0.029 seconds

Determination of Minimum Eigenvalue in a Continuous-time Weighted Least Squares Estimator (연속시간 하중최소자승 식별기의 최소고우치 결정)

  • Kim, Sung-Duck
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1021-1030
    • /
    • 1992
  • When using a least squares estimator with exponential forgetting factor to identify continuous-time deterministic system, the problem of determining minimum eigenvalue is described in this paper. It is well known fact that the convergence rate of parameter estimates relies on various factors consisting of the estimator and especially, theirproperties can be directly affected by all eigenvalues in the parameter error differential equation. Fortunately, there exists only one adjusting eigenvalue in the given estimator and then, the parameter convergence rates depend on this minimum eigenvalue. In this note, a new result to determine the minimum eigenvalue is proposed. Under the assumption that the input has as many spectral lines as the number of parameter estimates, it can be proven that the minimum eigenvalue converges to a constant value, which is a function of the forgetting factor and the parameter estimates number.

  • PDF

An Approach to Target Tracking Using Region-Based Similarity of the Image Segmented by Least-Eigenvalue (최소고유치로 분할된 영상의 영역기반 유사도를 이용한 목표추적)

  • Oh, Hong-Gyun;Sohn, Yong-Jun;Jang, Dong-Sik;Kim, Mun-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.327-332
    • /
    • 2002
  • The main problems of computational complexity in object tracking are definition of objects, segmentations and identifications in non-structured environments with erratic movements and collisions of objects. The object's information as a region that corresponds to objects without discriminating among objects are considered. This paper describes the algorithm that, automatically and efficiently, recognizes and keeps tracks of interest-regions selected by users in video or camera image sequences. The block-based feature matching method is used for the region tracking. This matching process considers only dominant feature points such as corners and curved-edges without requiring a pre-defined model of objects. Experimental results show that the proposed method provides above 96% precision for correct region matching and real-time process even when the objects undergo scaling and 3-dimen-sional movements In successive image sequences.

Interior Eigenvalue Computation Using Algebraic Substructuring (대수학 부구조법을 이용한 내부 고유치 계산)

  • Ko, Jin-Hwan;Byun, Do-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.743-749
    • /
    • 2007
  • Algebraic substructuring (AS) is a state-of-the-art method in eigenvalue computations, especially for large size problems, but, originally, it was designed to calculate only the smallest eigenvalues. In this paper, an updated version of AS is proposed to calculate the interior eigenvalues over a specified range by using a shift value, which is referred to as the shifted AS. Numerical experiments demonstrate that the proposed method has better efficiency to compute numerous interior eigenvalues for the finite element models of structural problems than a Lanczos-type method.

Design of an Optimal Adaptive Filter for the Cancellation of M-wave in the EMG Controlled Functional Electrical Stimulation for Paralyzed Individuals (마비환자의 근전도제에기능적전기자극을 위한 M-wave 제거용 최적적응필터 설계)

  • Yeom Hojoon;Park Youngcheol;Lee Younghee;Yoon Youngro;Shin Taemin;Yoon Hyoungro
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.479-487
    • /
    • 2004
  • Biopotential signals have been used as command in systems using electrical stimulation of motor nerves to restore movement after an injury to the central nervous system (CNS). In order to use the voluntary EMG (electromyography) among the biopotentials as a control signal for the electrical stimulation of the same muscle for CNS injury patients, it is necessary to remove M-wave of having high magnitude from raw data. We designed an optimal filter for removing the M-wave and preserving the voluntary EMG and showed that the optimal filter is eigen filter. We also proved that the previous method using the prediction error filter(PEF) is a suboptimal filtering in the sense of preserving the voluntary EMG. On basis of the data obtained from a model for M-wave and voluntary EMG and from actual CNS injury patients, with false-positive rate analysis, the proposed adaptive filter showed a very promising performance in comparison with previous method.