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Determination of Minimum Eigenvalue in a Continuous-time
Weighted Least Squares Estimator
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(Sung-Duck Kim)

Abstract - When using a least squares estimator with exponential forgetting factor to
identify continuous-time deterministic system, the problem of determining minimum
eigenvalue is described in this paper. It is well known fact that the convergence rate
of parameter estimates relies on various factors consisting of the estimator and
especially, their properties can be directly affected by all eigenvalues in the parameter
error differential equation. Fortunately, there exists only one adjusting eigenvalue in
the given estimator and then, the parameter convergence rates depend on this minimum
eigenvalue. In this note, a new result to determine the minimum eigenvalue is
proposed. Under the assumption that the input has as many spectral lines as the
number of parameter estimates, it can be proven that the minimum eigenvalue
converges to a constant value, which is a function of the forgetting factor and the
parameter estimates number.

Key Words : Weighted Least Squares Algorithm (3}%& 4=t <4 22]Z), Minimum Eigenvalue (24
2-3-#]), Persistent Excitation(z]4-¢7]), Convergence Bounded Value (48 §A3zhH

1. Introduction estimation of unknown parameters when one

wants to obtain an available model. In fact, most

There have been many reports treating the adaptive control systems contain the procedure to

‘F @ B AW T%A4% BITHH EHE 18 estimate unknown parameters of controlled sys-
# 2 H T 19914 48 68 tem or controller. Hence, parameter and/or sys-
LIk 1% OF 2 19924 51 28U tem identification may be an important factor in
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designing stable control systems. Various identifi-
cation algorithms have been discussed in the
discrete-time domain and good results have been
reported[1~4]. However, we know that most
control systems are continuous in nature or some-
times, it may be hard for non-linear physical sys-
tems to be discretized correctly. Hence, it is neces-
sary to apply a continuous-time formulation to
continuous adaptive control system[5~7].

Many research reports in dealing with
exponential stability or parameter convergence
property have been given[7~11]. Most of them
are developed by defining the minimum or maxi-
mum eigenvalue of the coefficient matrix in typi-
cal identification algorithms. In particular, pa-
ramater convergence has attracted considerable
attention in recent years. It is one of the important
factors on the design of on-line identification or
adaptive control. In general, the rate of parameter
estimates depends on several factors like the
parameter adaptive gain, initial conditions or
input components(5, 7, 10].

Sometimes, it is desirable to know a priori how
these varialbes can affect the convegence rate.
The exponential convergence is guaranteed under
the assumption that the regressor is persistently
exciting. Since the regressor consists of the input
and its filtered signals, it contains all behaviors of
input components. If the input sufficiently rich of
any order, the regression vector is sufficient to
satisfy the persistent excitation condition, except
for an over-parameterization case. Therefore, we
can easily guess that the eigenvalue of the updat-
ing law may be analyzed by the input spectrum
behaviors. Consequently, the convergence rates of
parameter estimates can be developed in terms of
the eigenvalue.

If system input is sufficiently rich, parameter
convergence rates can be quantified with respect
to the variation of several variables manipulated
by the designer. Of course, the analytic results for
them may appear variously for different estima-
tion structures. In this paper, we will discuss par-
ameter convergence properties of only a weight-
ed least squares estimator[12, 13]. One main pur-
pose is to give a new result for the limit of the
eigenvalue, under the assumption that the input
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spectral lines are concentrated on the same points
as the number of parameter estimates. In such a
case, the minimum eigenvalue becomes as one
adjusting factor affecting the parameter conver-
gence rates.

In Section 2, a least squares estimator with
exponential forgetting factor{7,12,13] is
introduced and we will revise some properties such
as persistent excitation, and model error in the
estimator.

In Section 3, it can be shown that there exists
only one time-varying eigenvalue in the parameter
error differential equation, and the parameter
convergence rate depends only on this factor. In
particular, if the number of input spectral lines is
equal to that of parameter estimates, it is proven
that the eigenvalue converges to a constant value.
It is given as a function of the magnitude of the
forgetting factor and the number of parameter
estimates, by observing the behavior of the mini-
mum eigenvalue.

Some simulations to verify the given results are
also presented.

2. Continuous-time Least Squares
Estimator

Consider the case where we wish to perform
parameter estimation on the following linear
continuous-time system

A(s)v(1)=B(s)u(t) (2.1

where %(¢)< R is a quasi-stationary input signal
and #(¢) and y(¢)E R! are only available at time ¢.
We suppose that the system is stable and A(s),
B(s) are coprime polynomials, given by

AS)=s"+ars" '+ + an
B(s)=bos™ + b1s™ '+ -+ b
Dividing both sides of (2.1) by a known monic
polynomial, A(s), of oder #, leads to

(Ao(iiz)q(s)) WO+ fo({g)) w(t)  (2.2)

()=

where Ay(s) is assumed to be stable, which is given
by

Als)=s"+as" -+ an
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The system described by (2.2) is an ARX
model and so we can express the prediction output
as a linear regression

F(6)=¢"()(1) (2.3)

where ¢(#)SR” and §(+)€ R? denote regression
vector and parameter estimates vector, respective-
ly, and % is the number of parameter estimates.
Suppose the upper degrees of A(s) and B(s) are
known a priori and the number of unknown
parameters can be chosen by the designer to p=n»
+m+1. Let p{= p) define as the number of real
parameters for the system model in (2.1). If p can
not be given correctly in general identification
designs, there exists model error between the
property of the real plant and that of an estimated
model. In such a case, we can easily guess that the
existence condition of a unique solution of parame-
ter estimate vector varies with the model struc-
ture, which is arbitrarily chosen by the designer.
Since our purpose in this paper is to analyze the
parameter convergence rate in an on-line weighted
least squares estimator, any property in the pres-
ence of unmodeled dynamics will not be treated
further.

The nominal parameter vector, 4,< R? is given
as

6*72[671_611 Az~ a2 An—Qn bo by -+ bm]
In this case, real parameters, {«,, b;} can be clearly

calculated from §é,. Define the prediction error to
estimate unknown parameters in (2.2) as

e(t)=v(t)—-y(t) (2.4)

The most common way to obtain an admissible
model which may be matchable with the real
system model (2.1) is to adjust a parameter vector
#(¢) such that the prediction error is minimized as
time goes to infinity. Now, let us define a cost
function with exponential forgetting factor as

](Z)Z‘[e“’“‘”ez(r)a’r (2.5)

where y =0,

If there exists any parameter vector &(¢) to
minimize the cost function, then it can be readily
shown that 3]

R(O(t)y=F(1) (2.6)

ASML SIZTHLX)S MYT|Y H2AFA WBH

where
R(t)= ["e 03¢ (0)de 2.7
f(f):£te”“”’¢(r)y(r)dr (2.8

Differentiating (2.7) and (2.8) and rearranging
them leads to the forms

PUH)=—yP )+ ()7 (1) 2.9
F()=—=2A )+ ¢(t)w(1) 2.10)

where P(#)=R~'(t)< R*** is covariance matrix.

Note that (2.9) can be given under the assump-
tion that R(¢) is nonsingular. Therefore, the neces-
sary and sufficient condition such that in the
steady state (2.6, has a unique solution, &, is that
the covariance matrix R(¢) should be positive for
all ¢. It is well known that the regression vector,
#(t), should be persistently exciting in order that
the parameter estimates converge to their nominal
values[1~5]. Recall that the regressor is persist-
ently exciting, provided that there exist some
positive scalars, ¢ and 3 such that for some con-
stant 7 and all ¢,

0<a]gf'%(r)qsf(r)drsﬁkoo (2.11)

Under persistency of excitation, the covariance
matrix, P7(¢), in (2.9) remains bounded, as does
P(t). Then, the persistent excitation of the regres-
sor results in the exponential stability and so the
parameter prediction error converges to zero as
time goes to infinity.

Applying (2.9) and (2.10) to (2.6), and using
2.4), we can yield the following updating law

8(t)=— P()p(t)e(2) (2.12)

To avoid computation of the inverse of P(¢) for
every time, it is desirable to use P(t) directly,
rather than using (2.7) and (2.9). By adapting the
identity

LLP(OPD]= PP 1)+ PP~ (1)=0

we obtain

P(t)=yP(t)— P()()$" (1) P(t)

In using (2.12) and (2.13) for on-line estima-
tion, the initial covariance matrix, P(0), should be
positive definite and the initial parameter vector,

(2.13)
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6(0), is arbitrary. There are various least squares
algorithms used in identification and adaptive
control designs, but we will examine only this
formulation to analyze parameter convergence
properties.

3. Parameter Convergence Rates

3.1 Eigenvalue of Coefficient Matrix

In fact, the convergence rate of parameter esti-
mates relies on several factors establishing the
given estimator. In this section, we shall show
some preliminary properties to give a useful quan-
titative measure to demonstrate the parameter
convergence rate when one changes arbitrarily
several variables.

Now, define parameter error vector as

G(1)=06(t)— bx (3.1
Substituting this into (2.4) leads to

e()=¢7(1) B(2) (3.2)
Applying (3.1) and (3.2) to (2.12) gives

8(t)=—P()()p"(1) B (1) (3.3)

If Ao(s) and A(s) are stable, then ¢(¢)is always
bounded for the bounded input. Moreover, as
assuming the regressor is persistently exciting, the
covariance matrix, P(t¢), is also bounded for all ¢.
From (3.3) we can easily see that the convergence
rate of the parameter error vector depends on all
the eigenvalues of coefficient matrix.
Denote the coefficient matrix of 4(¢) as

A(t)=P()p(1)¢™(1) (3.4)

Note that, for the simplicity of analysis, we will
use (3.4) although the coefficient matrix is — A(¢)
in fact.

Lemma 3.1 Suppose P(t¢) is invertible. Then A(¢)
has the same nullspace as ¢(¢)¢7(¢) for all ¢ and
there exists the only nonzero eigenvalue given by

M) =" ()P() (1) (3.5)

Proof : Consider multiplying A(¢) on the right
by any 3-vector, w, orthogonal to P(¢). Clearly
A(t)w=0 and, since the dimension of the space
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spanned by such w is p—1, A(¢) hasrank 1, i.e,, it
has at most one nonzero eigenvalue.

Now, premultiplying by $7(¢) on both sides of
A(t) gives

dT()A)=("(1)P(t)p(t))$7(2)
=A()p"(2)

Then, it can be immediately shown that A(¢) is
the nonzero eigenvalue of A(¢#).

Note that all eigenvalues of A(#) but the non-
zero eigenvalue, A(¢), are zeros independently of
the variables consisting of A(#) such as the spec-
trum, magnitudes of the input or the forgetting
factor. Thus, we have arrived at an important
conclusion that the continuous-time least squares
esitimator given by (2.12) and (2.13) has only one
non-positive eigenvalue. It can be adjusted by the
designer and changes in the range(—oo, 0] for
every ¢. Consequently, it is clear that parameter
convergence rate depends only on the time-varying
eigenvalue, — A(¢t), of coefficient matrix. More-
over, it appears as the minimum eigenvalue for
(3.3).

3.2 Convergence Bound Analysis

In most general adaptive control systems, it may
not be easy that the input components are chosen
arbitrarily by the designer in order to ensure the
exponential stability of parameter error vector.
However, it is possible to do that in identification
problems. Here, let the number of distinct spectral
lines be ¢. All signals in the system contain all
spectral lines of the system input and then, the
time-varying eigenvalue also has the same spectral
behaviors. Hence, we can guess that the determi-
nation of the convergence bounded value of the
eigenvalue may be one way to analyze the parame-
ter convergence rates.

One is then drawn to ask how to analyze the

convergence bound of the nonzero eigenvalue. It
may look like an impossible problem to calculate
the convergence bound of the minimum
eigenvalue, for some variables manipulated by the
designer. Since the input is given as a function
representing several distinct frequency modes, the
eigenvalue appears in a very complex form de-
scribed as a time-varying, non-linear function.
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However, we will show a new result determining
the convergence bound of the eigenvalue only for
P =¢q in this section.

Typically, input is given as a continuous quasi-
stationary signal in practical applications. There-
fore it can be written as the following almost
periodic function, when the spectral lines of the
input are located in w,, =0, 1, -, =k and the
amplitude of each spectrum is @,,

k
ult)= 2 @e™ (3.6)

where @.=a*-;, w=-—w-;, and wy=0, and '*
denotes complex conjugate.
For the simplicity of notation, defining a vecotr,
€ C? and BER? as
T =[x Trsr * @xor i)
51:[_0% T Wk-1 "t Wi wk]
then, (3.6) can be rewritten
u(t)y=aTe(t) 3.7
where
qor(t)=[ej’9” PUIINE ejﬂqt]
and ¢=2k+1, and £, denotes the ;-th element of
A
From (2.2) and (2.3), we can directly write the
regressor as

$(£)=H () u(t)) (3.8)
where H(s)= C is '

H’(s):—Aol(s)

(5" 2Go(5) s 2Gals) -+ Gpl(s)s™ 1 -+ 1]
and G,(s)=B(s)/A(s).
Applying (3.7) to (3.8) leads to

#(1)=Ng(t) (3.9)

where N (C?7 is

N=[aH(B) a:H(jB2) - asH(jB4)]

From (3.9), we see that the regressor can be
seperated into a constant matrix and a time-
varying vector. The constant matrix is represent-
ed in terms of the relations between amplitudes
and phases in the system model and algorithm for
every spectral line, while the time-varying vector

ASAIZL SHEHLXS AYoI HL2DRX WY

consists of the exponential terms with all complex
frequency modes, lineary independent of each
other.

Lemma 3.2 Suppose the regressor is persistently
exciting. Then, the matrix, ¥, is invertible.
Proof : Let us assume the contrary to the result
and show that this leads to a contradiction. If N is
singular, there exists a vector of p scalars, y& C*,
at least one of which is nonzero, which satisfies

x"™N=0
Since the equality does not change even if a non-

zero-vector, ¢(¢), is multiplied on both sides of the
above equation, then

xTo(1)=0 {3.10)

Since we assume that the input is supported on
p distinct spectral lines, then ¢(¢) is persistently
exciting.

However, if there exists a nonzero vector x;
satisfying (3.10), it means that ¢(¢{) does not
satisfy persistent excitation This contradicts the
above result. Therefore x must be a zero vector
and all column or row vectors of N are linearly in
dependent. This implies that there exists the
inverse of N.

Applying (3.9) into (3.5) and (2.9), then we
have the nonzero eigenvalue and a linear transform-
ed covariance matrix described as

A =e¢ () e(t)

Q' (N=—rQ O+ e(H)e™(t)
where

QUH=NTPHNT

It may not be easy to solve A(¢) and Q(¢) at each
time. However, we may obtain them in the steady-

3.1
{3.12

state, by observing the convergence bound of the
time-varying eigenvalue. At first, let us determine
the steady-state value of Q'(¢). From (3.12),

1

QEl(f):S—+“7{¢(f)¢T(t)} (3.13)
Substituting ¢(¢) into (3.13) gives
Q:(1)=D{t)RD(¢) (3.14)
where
1025



D(,>:diag[ejﬂ1t ejﬂz’...ejﬂqt]

1 1 i 1 1

JButy jBety iBety

I S SR S

R=| Bty Bty JBra+y
SR R T
L jBaty jBaty HBaatyJ

where 8, =28:+73;.

In order to determine the solution of (3.12),
Q(#) should be solved a priori. The determinant of
Q~'(¢) is eqivalent to

det @ '(t)=det R

because det D(¢) is always unity for the practical
continuous input signal described by (3.6).

Since all column vectors in R are linearly in-
dependent, R is nonsingular, and then substituting
(3.14) into {3.11), we can yield.

AD=URU (3.15)
where
UT=o"(1)D™'(#)

:[1 1...1]

From (3.15) it is readily shown that the conver-
gence bound of A(¢#) in the steady-state becomes a
complex function independently of time. Finally, it
is given as

M
M

17

W

W

i

where 4 denote lim,-.A(#), and 7, is the j/-th
element of R

Here, let u define K,= R?*® as the p square
counter-identity matrix given by

D e 0 1
Ko= oo
1 e 0 0

We note that R& C?*? is a symmetric, counter
-Hermitian matrix and it does not depend on time.
In particular, we can get

R*=K,RK,
Since R exists and K,=Kj', then
R *=K,R 'Ky

Since R~ is also a counter-Hermitian matrix, we
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can easily show that the convergence bound of A(¢)
has a real constant value. Although it seems to be
impossible to find the convergence bounded value
of the minimum eigenvalue, we can obtain the
following result for it through some observations.

Theorem 3.1 Suppose that the number of para-
meter estimates is 5 and the input has g¢(=5)
distinct spectral lines. If the parameter is esti-
mated by using the least squares identification
algorithm given in (2.12) and (2.13), then, there
exists a unique convergence bound for A(¢), given
by

A=gqy (3.17)

where A=1im;-~A(?).

Proof : In order to simplify matrix operations
for A(¢) described in (3.15), we begin to analyze
from obseving the following relation.

A=U'RU

=UT(K:R)"'U (3.18)

Since K,R results in rotating R by K,, the sum of
all elements in K,R does not change.
First, let us K,R denote G. Then, we can write

[ S SN S
Sx‘f‘S]* SI+SZ* 81+Sq'
D S S |

G=| s2+5" setst S+ 59" (3.19)
1 1 1
Lsgts1* Sqts2” Sq+sq* )

where
=+ jBa-in (3.20)

Note that all diagonal elements of G are real
constants, 1/y.

In order to diagonalize the matrix &, we can
partition it into four submatrices, i.e.,

Gu G
=l el
G*lz GZZ

where Gi1, Gz and G are (p—1), (p—1)x1 and
(1x 1) matrices, respectively.
Now, let

(3.21)

T :[ 7 (;1262‘21}

0 1
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then,

T:LG;‘G,; H

Hence, using these matrices with respect to G, we

can obtain
T'GTz[G”_GIZGEZIGl*Z ? :j
0 Gz
=[L 0 | (3.22)
0 Ge -
where

L=Gu— Gi:GHGY
Substituting (3.19) into L, then, the jj-th ele-
ment of [ gives
L= SiSq 1 st—s3
Ysit sy sits) sf+sg

Denoting M* as

T S1 7S¢ $2— 8¢ Sq-1" 8¢
M*=dia [
£ si+Sq S2Fsg Sq-1+S¢"

then, I, satisfies the following relation

L=M*GuM (3.23)
Using (3.23) with respect to (3.22) gives
M*GuM 0 ]

(3.24)
0 Gz )

T*GT:[

Consequently, we can easily find the inverse of T*
G T because M and G, are nonsingular That is.

MIGi'M™™* 0 R
(reer) =" ] (3.25)
0 x22
From (3.18) and (3.25), we have
A=UTG'U
=U"TN(T*GT)'T*U (3.26)
Now, observe that
1 0
UrT=0 1-1] |
[ ] —GR'Gh 1
ZI:S]*hS; SF—Sq .. Sa1—sq 1]
St +sq 2 +sq  se+sg
M 0
=o' 3.27)
01 (3.27,

Applying (3.25) and (3.27) to (3.26), then A
becomes

ARAIR SEHLKS MY HL2DRx AW

A= (]T[GIII 0 j|br

0 Gz
Gt 0

-7 | (3.28)
0 sot+sa 3.28

Continuing this procedure for G, leads to
A= U'diage[si+s* s+ - sq+silU
:g(s,+s:) (3.29)
From (3.20}, it is easily verified that, for all ;,
sitsi=y

Finally, applying this to (3.29) gives (3.17).

On the other hand, defining
(1) =9 (1) P(1) (1)
then, we can immediately show that from (2.13)
A1) =)y = A1) (3.30)

Substituting (3.17) into (3.30), in the steady-state
As(#) becomes

Ar=q7*(1—¢q)

where A,=1im;-=Ap(t). Therefore, we can see that
o= ‘Ap/a is

o=y(¢g—1) {3.31)

Although the proof of Theorem 3.1 is somewhat
long and tedious, it has some interesting features.
Clearly, note that the results obtained via (3.17)
and (3.31) are very useful when obserring the
properties of minimum eigenvalue and further
determining the guaranteed rates of exponential
convergence. The one immediate observation is
that there exists no time-varying variables in
(3.17) and (3.31) contrary to one's expectation.
This is really a surprising result. It means that A(¢)
has a constant value in the steady-state.

Assuming the spectral lines of the input are
concetrated on § points, the minimum eigenvalue
converges to a constant which is only a function of
the forgetting factor and the number of parameter
estimates. We also note that the convergence
bound appears independent of manipulated vari-
ables such as amplitude, or frequency components
as well as the unknown parameters, except for
forgetting factor. If the number of spectrial lines is
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more than p, this property does not hold.
4. Simulation Examples

To verify several properties claimed for param-
eter convergence rates, consider the following 1st
order system described as

3

)’(l):E;‘Qu(f)

For this system, let us choose a stable filter as
Ao(s)=s5+4
and assume the number of parameter estimates to
be 2.
To examine the result given in Theorem 3.1,
consider the following input with 2 spectral lines,
u(t)=ansinwt

In such a case, the nominal parameter vector is
given as 7=[2 3] and all initial parameter esti-
mates are assumed to be zero. Table 4,1 summa-
rizes some data used in simulating the first order
plant.

Table 4.1 Some data given in simulations.

symbols Figure 4.1 Figure 4 3(a} Figure 4.3([))4
an=2, P0O)=101 | y=1, P(O)=10/ =1, an=1
— =1 an=1 PO)=1
— y=5 an=2 P0)=51
------ y=10 an=3 P0)=10]
----- y=20 Un=d P0)=201
O e I T L T T S T )
“rof) . A
3 20!
g |
o |
@ -30f
-0} i
0 2 4 6 8 10
time[sec]

Fig. 4.1 Convergence bound properties of A(#),
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Figure 4.1 shows the convergence bound pro-
perties of the time-varying eigenvalue when chang-
ing the forgetting factor to y=1, 5, 10 and 20. Note
that from Theorem 3.1, the convergence bounded
value can be determined to A=2y for the least
squares estimator and then, the minimmum

eigenvalue of parameter error differential equa-

2.5 T
!
2 - 4’. N
tt
I’
— ]
1
5 150 -
+2 il
o L
g "
E 1 —l: -
© X
=% i
]
0.5} _
i
It
1
O ) -
0 5 10
time[sec]
4 T
N
t
[+¥]
-
©
g
¥
e
®
2
o :
0 5 10
time[sec]

Fig. 4.2 Convergence properties of parameter
estimates.
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Y ‘.
f— |
© Ve
< i
) I 4
[2%3) ._3 .Y / =
o .
L
-4/ 4
-5 1
0 5 10
a) when varying amplitude
g P
T
©
=
g \\/\___1
> Nl S
d
)
2
)
._4_ 1
0 5 10

(b) when varying P(0)

Fig. 4.3 Convergence bound properties of A(¢#).

tion becomes —2y. As we see from Figure 4.1, all
eigenvalues converge exactly to —2y for all 5.
Figure 4.2 demonstrates the parameter conver-
gence properties for the given plant. It is clearly
seen that the parameter convergence speed direct-
ly relies on the minimum eigenvalue.

When input amplitudes and initial covariance
matrices are altered, the convergence properties
for —A(t) are given in Figure 4.3. From these
results, we can immediately see the convergence

A&AZL ZalaxtE NYOI LT RA FH

bounded value of A(¢) approaches to —2, inde-
pendently of a, and P(0).

5. Conclusions

Parameter convergence properties for a least
squares algorithm with exponential forgetting fac-
tor are discribed. Assuming input is sufficiently
rich, it can he verified that there exists only one
time-varying eigenvalue in the coefficient matrix
of parameter error differential equation and it can
affect the convergence rates of parameter esti-
mates.

In particular, when the system input has as
many spectral lines as the number of parameter
estimates, the minimum eigenvalue converges to a
constant value. This bounded value results in a
function of the forgetting factor and the number of
parameter estimates. It is independent of the
amplitudes and the spectrum of input, the initial
covariance matrix, as well as the transfer function
model to be identified.
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