• Title/Summary/Keyword: 최대 표면 거칠기

Search Result 21, Processing Time 0.049 seconds

Analysis of the Fracture Roughness of Crystalline Rock under Multi-stage Stress Conditions (다단계압력 환경하에서의 결정질 암석의 절리면 거칠기 변화 분석)

  • Choi, Junghae;Kim, Heyjin
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.237-249
    • /
    • 2019
  • The roughness changes on a fracture surface were analyzed via a multi-stage compression test under high temperatures to assess how the cracks in a rock mass affect groundwater movement. The analyzed samples consist of coarse granitic rocks from approximately 40 and 270 m depth, and fine granitic rocks from 500 m depth. The compression test was conducted on $20{\times}40{\times}5mm$ samples using a loading system where the pressure increases in 10 MPa increments to 120 MPa. A high-resolution 3D confocal laser scanning microscope (CLSM) was used to observe the surface changes, including the roughness changes, at each pressure step. The roughness change was calculated based on the roughness factor. The experimental results indicate that the roughness of the fracture surface varies with rock type under the stepwise pressure conditions. These data provide a basis for predicting groundwater flow along rock fractures.

Analysis fo the Rock Joint Strength Characteristics Using New Rock Joint Roughness Quantification Method (암석의 절리면 거칠기 정량화 기법 개발을 통한 절리면 전단강도 특성 분석)

  • 이인모;홍은수;배석일;이석원
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.229-238
    • /
    • 2002
  • This paper introduces the surface roughness parameter, Rs to the characterization of joint roughness and quantitatively illustrates the influence of joint roughness on the joint shear strength. A new peak shear strength criterion for rock joints using Rs is suggested. The results show that the surface roughness parameter, Rs can appropriately reflect the degree of roughness for the rock joint surfaces tested in this study A measuring interval of 2mm and profile length of 5cm can be used to characterize the joint roughness of the rock core size surfaces; however, the scale of fluctuation, $\delta_\alpha$ should be considered to extend the surface roughness parameter, Rs to the large-scale field rock joint surfaces. For the smooth joint roughness, sliding of the rock cores is the principal shear mechanism; however, the breakage of roughness from the rock cores is inferred for rougher joint roughness.

Influence of surface treatment on the insertion pattern of self-drilling orthodontic mini-implants (표면처리가 교정용 미니 임플랜트의 식립수직력과 토크에 미치는 영향)

  • Kim, Sang-Cheol;Kim, Ho-Young;Lee, Sang-Jae;Kim, Cheol-Moon
    • The korean journal of orthodontics
    • /
    • v.41 no.4
    • /
    • pp.268-279
    • /
    • 2011
  • Objective: The purpose of this study was to compare self-drilling orthodontic mini-implants of different surfaces, namely, machined (untreated), etched (acid-etched), RBM (treated with resorbable blasting media) and hybrid (RBM + machined), with respect to the following criteria: physical appearance of the surface, measurement of surface roughness, and insertion pattern. Methods: Self-drilling orthodontic mini-implants (Osstem implant, Seoul, Korea) with the abovementioned surfaces were obtained. Surface roughness was measured by using a scanning electron microscope and surface-roughness-testing machine, and torque patterns and vertical loadings were measured during continuous insertion of mini-implants into artificial bone (polyurethane foam) by using a torque tester of the driving-motor type (speed, 12 rpm). Results: The mini-implants with the RBM, hybrid, and acid-etched surfaces had slightly increased maximum insertion torque at the final stage ($p$ < 0.05). Implants with the RBM surface had the highest vertical load for insertion ($p$ < 0.05). Testing for surface roughness revealed that the implants with the RBM and hybrid surfaces had higher Ra values than the others ($p$ < 0.05). Scanning electron microscopy showed that the implants with the RBM surface had the roughest surface. Conclusions: Surface-treated, self-drilling orthodontic mini-implants may be clinically acceptable, if controlled appropriately.

Prediction of the Machined Surface Roughness using Geometrical Characteristic Lines (기하학적 특징선을 이용한 밀링 가공면의 표면 조도 예측)

  • 정태성;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.66-69
    • /
    • 2003
  • This paper presents the procedures for the evaluation of the maximum surface roughness and the shapes of the cut remainder employing the ridge method. The shapes and the heights of the cut remainder are estimated by overlapping adjacent ridges in consideration of the various machining parameters: the feedrate. the path interval. The maximum surface roughness in plane cutting modes are derived as a function of the maximum effective cutter radius, R$\_$eff,max/. and the path interval ratio, $\tau$$\_$fp/, The predicted results are compared with the values estimated by the conventional roughness model.

  • PDF

태양전지 자기세정 코팅을 위한 스퍼터링되어진 TiO2 박막의 특성

  • Park, Cheol-Min;Jeong, Ho-Seong;Lee, Jae-Hyeong;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.479.2-479.2
    • /
    • 2014
  • 자가 세정 및 김서림 방지가 가능한 투명 코팅 소재로써 $TiO_2$ 코팅박막을 제안하였으며, $TiO_2$ 코팅박막은 스퍼터링 방식으로 제작하였다. 낮은 표면 에너지를 갖는 물질을 화학적으로 변형시키고 유리기판 위 텍스쳐링을 형성함으로써, 수분에 대해 완전히 다른 특성을 갖는 표면을 유도하며, 김서림 방지 기능과 자가세정, 그리고 높은 빛 투과 특성으로 스마트 표면 코팅을 구현할 수 있다. $TiO_2$ 자가세정 코팅기술은 설치 후 1년 안에 먼지 및 오염에 따라 최대 40%의 효율 저하가 나타나는 태양전지, 디스플레이 패널 분야에서 매우 중요한 요소로 자리 잡을 것으로 기대되어진다. 본 연구에서는 $TiO_2$ 세라믹 타겟이 부착된 비대칭 마그네트론 스퍼터링 장치를 이용하여 $TiO_2$ 박막을 증착하였으며 증착되어진 $TiO_2$ 박막의 광촉매 특성과 트라이볼로지 특성을 고찰하였다. 광촉매 특성으로는 표면 접촉각 분석을 통하여 고찰하였으며, 트라이볼로지 특성으로는 경도, 잔류응력, 마찰계수, 표면 거칠기 등을 평가하였다. 또한 XRD, FESEM 분석등 구조분석을 통하여 광촉매 특성과 트라이볼로지 특성등과의 연관성을 규명하였다.

  • PDF

Surface roughness and $Candida$ $albicans$ adhesion to flexible denture base according to various polishing methods (연마방법에 따른 탄성의치의 표면거칠기와 $Candida$ $albicans$의 부착율 변화)

  • Oh, Ju-Won;Seo, Jae-Min;Ahn, Seung-Keun;Park, Ju-Mi;Kang, Cheol-Kyun;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.106-111
    • /
    • 2012
  • Purpose: The purpose of this study was to compare the effect of 3 chairside polishing methods and laboratory polishing methods on surface roughness and $C.$ $albicans$ adhesion of polyamide denture base. Materials and methods: Using contact profilometer, the surface of polyamide specimens ($25{\times}15{\times}2mm$) was studied after conventional polishing without finishing and after chiarside polishing with 2 chiarside polishing kits and chairside-pumice polishing following finishing with tungsten carbide bur. To evaluate the adhesion of $C.$ $albicans$, $C.$ $albicans$ suspension was overlayed on the test specimen. And the specimens were incubated for 2 hours. Imprint culture method was achieved and counted the colony on the agar plate. Polished polyamide were evaluated using a scanning electron microscope. The statistics were conducted using one-way ANOVA and in case of difference, Scheffe test and Tamhane's T2 test were used. Results: Surface roughness (Ra) of surfaces polished with 2 chairside polishing kits had higher than conventional polishing and pumice polishing. The highest roughness value was $0.32{\pm}0.10{\mu}m$, and the lowest was $0.02{\pm}0.00{\mu}m$. The adhesion of $C.$ $albicans$ on the specimens polished with chairside polishing group and pumice polishing group were increased than conventional polishing group ($P$<.01). Conclusion: Conventional laboratory polishing was found to produce the smoothest surface and the lowest adhesion of $C.$ $albicans$. Two groups polished with Chairside polishing kits were similar with respect to surface roughness. Surface of the specimen polished with pumice is significantly smoother than 2 chairside polishing groups, but the result of $C.$ $albicans$ adhesion is that group polished with pumice was similar with 2 chairside polishing groups ($P$>.01).

플라즈마를 이용한 GaAs 반응성 이온 식각

  • Lee, Seong-Hyeon;No, Ho-Seop;Choe, Gyeong-Hun;Park, Ju-Hong;Jo, Gwan-Sik;Lee, Je-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.26.2-26.2
    • /
    • 2009
  • 이 논문은 반응성 $BCl_3$ 플라즈마로 GaAs의 건식 식각을 진행한 후 그 결과에 대하여 연구 분석 한 것이다. 이 때 사용한 식각 공정 변수는 $BCl_3$ 플라즈마에서의 가스유량, 공정 압력과 RIE 척 파워의 변화이다. 먼저 공정 압력을 75 mTorr 고정시킨 후 $BCl_3$ 유량을 변화 (2.5~10 sccm)해서 실험하였다. 또한 BCl3의 유량을 5 sccm으로 고정시킨 후 공정압력을 변화(47~180 mTorr)해서 식각 실험을 실시하였다. 마지막으로 47 mTorr와 100 mTorr 의 각각의 공정압력에서 RF 척 파워를 변화시켜 (50~200 W) 실험하였다. GaAs 플라즈마 식각이 끝난 후 표면단차 측정기 (Surface profiler)를 사용하여 표면의 단차와 거칠기를 분석하였다. 그 후 그 결과를 이용하여 식각율 (Etch rate), 식각 표면 거칠기 (RMS roughness), 식각 선택비 (Selectivity) 등의 식각 특성평가를 하였다. 또한 식각 공정 중에 샘플 척에 발생하는 자기 바이어스와 $BCl_3$ 플라즈마 가스를 광학 발광 분석기 (Optical Emission Spectroscopy)를 이용하여 플라즈마의 상태를 실시간으로 분석하였다. 이 실험 결과에 따르면 공정 압력의 증가는 샘플 척의 자기 바이어스의 값을 감소시켰다. $BCl_3$ 압력 변화에 의한 GaAs의 식각 결과를 정리하면 5 sccm의 $BCl_3$ 가스유량과 RF 척 파워를 100 W로 고정시켰을 때 식각율은 47 mTorr에서 가장 높았으며, 그 값은 $0.42{\mu}m/min$ 이었다. GaAs의 식각 속도는 공정압력이 증가할수록 감소하였으며 180 mTorr에서는 식각율이 $0.03{\mu}m/min$로 거의 식각되지 않았다. 또한 공정압력을 75 mTorr, RF 척 파워를 100 W로 고정시키고, $BCl_3$ 가스유량을 2.5 sccm에서 10 sccm까지 변화시켰을 때, 10 sccm 의 $BCl_3$ 가스유량에서 가장 높은 식각율인 $0.87{\mu}m/min$이 측정되었다. 압력에 따른 GaAs의 식각 후 표면 거칠기는 최대 2 nm 정도로 비교적 매끈하였으며, 거의 식각되지 않은 180mTorr의 조건에서는 약 1 nm로 낮아졌다. 본 실험 조건에서 GaAs의 감광제에 대한 식각 선택비는 최대 약 3:1 이내였다.

  • PDF

A Study on the Hydrodynamic Effect of Biofouling on Marine Propeller (선박 프로펠러 표면의 생물부착물이 프로펠러 유체역학적 성능에 미치는 영향에 관한 연구)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Goo, Bonguk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2016
  • The effect of propeller surface roughness condition on ship performance is very significant even the influence of fouling on propeller performance is not well established compared to biofouling on the hull surface. In present study, predictions of open water efficiency of propeller are made for three different fouling conditions, and its application is given for the 7m full-scale propeller of a medium-size tanker in open water condition. The numerical predictions of propeller efficiency loss due to fouling are based on the results from laboratory-scale drag measurements and boundary layer similarity law analysis presented in Schultz (2007) together with an in-house unsteady lifting surface code which is an appropriate tool to predict the effect of propeller surface roughness on propeller performance. The results of this study indicate that the subject propeller with the small calcareous fouling ($k_s=0.001$) can lead to as high as 15 % loss at the propeller operating condition (J=0.5) and the loss of propeller efficiency due to fouling should be evaluated while the ship is operating.

Optimum design and performance of marine sea water pump with impeller using CFRP (CFRP 임펠러를 사용한 선박용 해수펌프의 최적설계와 성능특성)

  • Jeong, Seon Yong;Rhi, Seok Ho;Seo, Hyoung Seock;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7878-7884
    • /
    • 2015
  • Marine sea water pump with impeller using carbon fiber block was developed to prevent the impeller corrosion by the salinity. A numerical analysis was carried out in order to optimize the impeller and volute design for marine sea water pump and to investigate the sensitivity of the related parameters(impeller thickness, surface roughness) using CFD commercial code. The impeller thickness is limited because of the weight. Since the impeller using the carbon fiber lights, the thickness which has a maximum efficiency can be used. The results show that the surface roughness leads to an 7% reduction in pump efficiency.

Effects of Crud on reflood heat transfer in Nuclear Power Plant (핵연료 크러드가 원전 재관수 열전달에 미치는 영향)

  • Yoo, Jin;Kim, Byoung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.554-560
    • /
    • 2021
  • CRUD (chalk river unidentified deposits) is a porous material deposited on the surface of nuclear fuel during nuclear power plant operation. The CRUD is composed of metal oxides, such as iron, nickel, and chromium. It is essential to investigate the effects of the CRUD layer on the wall heat transfer between the nuclear fuel surface and the coolant in the event of a nuclear accident. CRUD only negatively affects the temperature of the nuclear fuel due to heat resistance because the effects of the CRUD layer on two-phase boiling heat transfer are not considered. In this study, the physical property models for the porous CRUD layer were developed and implemented into the SPACE code. The effects of boiling heat transfer models on the peak cladding temperature and quenching were investigated by simulating a reflood experiment. The calculation results showed some positive effects of the CRUD layer.