• Title/Summary/Keyword: 최대 탐지거리

Search Result 57, Processing Time 0.024 seconds

X-Band FMCW RADAR Signal Processing for small ship (소형선박용 X-Band FMCW 레이더 신호처리부 설계 및 구현)

  • Kim, Jeong-Yeon;Chong, Kil-To;Kim, Tae-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3121-3129
    • /
    • 2009
  • Conventional marine radar systems utilize pulse radar which is capable of high-power transmissions and is effective for remote detection purposes. A pulse radar is most commonly used on medium or large vessels due to its expensive installation and maintenance costs. I propose the use of a Frequency Modulated Continuous Wave (FMCW) radar system operated at low-power and high-resolution instead of the conventional pulse-radar based system. The transmitted and received signals of the FMCW radar system were theoretically analyzed and radar signal processing design and simulation experiments were performed to detect the range and speed. Intermediate Frequency (IF) signal mixed with virtual transmit and receive signals were generated to perform FMCW radar signal processing simulations where the IF signal underwent noise reduction through a lowpass filter. The maximum frequency was derived through the sample interval of the FFT size instead of using A/D converter. This maximum frequency was used to get the frequency range and frequency speed which were in turn used to calculate the range and speed. The virtual beat frequency generated using MATLAB is utilized to analyze the beat frequency used in the actual FMCW radar system signal processing. The differences in the range and speed of the beat frequency signals are processed and analyzed.

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander (달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석)

  • Lee, Choong-Min;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.

Design and Noise Figure Analysis of Coherent Transceiver for Airborne Radar (비행탑재용 레이다의 코히어런트 송수신단 설계 및 잡음지수 해석)

  • Woo, Duk-Jae;Kim, Sang-Joong;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.38-47
    • /
    • 2004
  • To achieve functions of doppler measurement, MTI(Moving Target Indicator), high-resolution, and others in radar system, all circuits of transmitter and receiver are to be performed in coherent system. In this paper, we use TWTA(Traveling Wave Tube Amplifier), STALO(Stable Local Oscillator) and COHO(Coherent Oscillator) to design of coherent radar transceiver, and calculates noise figure of designed receiver. Using radar equation calculated noise figure, maximum detecting range of each transmitting mode can be calculated.

  • PDF

A theoretical calculation and measurements for Radar Cross Section of a moving complex metal target (복잡한 형태를 갖고 운동중인 금속제물체의 Radar Cross Section)

  • 진연강;윤현보
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.6
    • /
    • pp.33-41
    • /
    • 1971
  • This paper presents a theoretical calculation and measurements for the RCS(Radar Cross Scetion) value of a moving complex target, a small metal aircraft. The front view of aircraft on the drawing is divided in to several simple models to calculate its RCS value by the relative phase nlethod and the random phase method at the given frequency. The aircraft, cessna 305, inbounded from 170$^{\circ}$ to X international airport, is searched by radar with the wave length of 11cm to measure its miximum range which is necessary to determine the RCS value. The measured data are found to be similar to the theoretical values.

  • PDF

Modelling on Contrast Threshold and Minimum Resolvable Angle of Fish Vision (어류의 시각 예민도-명암대비 역차와 최소 분해각 - 에 관한 모델링)

  • 김용해
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.43-51
    • /
    • 1998
  • 수중에서 어류들이 색이시 생물적인 목표물이나 어로작업시 어구 등의 시각자극과 최대탐지거리 등을 예측하기 위해서 어류의 주된 시각 예민도 요소인 명암대비 역치와 최소 분해각을 수치모델링 하였다. 어류시각의 명반응과 순반응에 따라 명암대비 역치와 최소분해각은 배경휘도와 체장에 따른 자연대수의 함수로 표현하였다. 이 때 관련된 수식의 계수들은 기존의 실험 결과나 어종간의 시각 예민도 등에서 추정할 수 있었으며 또한 생리 생태나 개체차 등도 조정할 수 있다. 본 모델은 먹이생물이나 어구 등의 시각자극에 의한 시인정도와 시정 등의 추산에 이용될 수 있으며, 아울러 전반적인 수중 광학적인 조건하에서 시각자극의 세기에 따른 시각 예민도와 그 반응에 의한 어류행동 모델에 응용될 수 있을 것이다.

  • PDF

Statistical Approach for AESA Radar Maximum Detection Range (AESA 레이더 최대탐지거리의 통계적 접근)

  • Tak, Daesuk;Shin, Kyung Soo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2019
  • Statistical hypothesis tests are important for quantifying answers to questions about samples of data. The Step Process of Statistical Hypothesis Testing; state the null hypothesis, State the alternate hypothesis, State the alpha level, Find the z-score associated with alpha level, Find the test statistic using this formula, If the calculated t distribution value from the data is larger than the t distribution value of alpha level, then you are in the Rejection region and you can reject the Null Hypothesis with ($1-{\alpha}$) level of confidence.

Research on Optimal Deployment of Sonobuoy for Autonomous Aerial Vehicles Using Virtual Environment and DDPG Algorithm (가상환경과 DDPG 알고리즘을 이용한 자율 비행체의 소노부이 최적 배치 연구)

  • Kim, Jong-In;Han, Min-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.152-163
    • /
    • 2022
  • In this paper, we present a method to enable an unmanned aerial vehicle to drop the sonobuoy, an essential element of anti-submarine warfare, in an optimal deployment. To this end, an environment simulating the distribution of sound detection performance was configured through the Unity game engine, and the environment directly configured using Unity ML-Agents and the reinforcement learning algorithm written in Python from the outside communicated with each other and learned. In particular, reinforcement learning is introduced to prevent the accumulation of wrong actions and affect learning, and to secure the maximum detection area for the sonobuoy while the vehicle flies to the target point in the shortest time. The optimal placement of the sonobuoy was achieved by applying the Deep Deterministic Policy Gradient (DDPG) algorithm. As a result of the learning, the agent flew through the sea area and passed only the points to achieve the optimal placement among the 70 target candidates. This means that an autonomous aerial vehicle that deploys a sonobuoy in the shortest time and maximum detection area, which is the requirement for optimal placement, has been implemented.

Effect of Evasive Maneuver Against Air to Air Infrared Missile on Survivability of Aircraft (공대공 적외선 위협에 대한 회피기동이 항공기 생존성에 미치는 영향)

  • Bae, Ji-Yeul;Bae, Hyung Mo;Kim, Jihyuk;Jung, Dae Yoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.501-506
    • /
    • 2017
  • An infrared seeking missile does not emit any signal by itself as it is guided by passive heat signature from an aircraft. Therefore, it is difficult for the target aircraft to notice the existence of incoming missile, making it a serious threat. The usage of MAW(missile approach warning) that can notify the approaching infrared seeking missile is currently limited due to its high cost. Furthermore, effectiveness of MAW against infrared seeking missile is not available in open literature. Therefore, effect of evasive maneuver by MAW on the survivability of the aircraft is simulated to evaluate the benefit of the MAW in this research. The lethal range is used as a measure of aircraft survivability. An aircraft flying at an altitude of 5km with Mach 0.9 being tracked by air-launched AIM-9 infrared seeking missile is considered in this research. As a variable for the evasive maneuver, the MAW recognition distance of 5~7km and the G-force of 3~7G that limits maximum directional change of the aircraft are considered. Simulation results showed that the recognition of incoming missile by MAW and following evasive maneuver can reduce the lethal range considerably. Maximum reduction in lethal range is found to be 29.4%. Also, the MAW recognition distance have a greater importance than the aircraft maneuverability that is limited by structural limit of the aircraft.

A Study on the Measures for Detection Error from the Displacement Distortion of the RADAR Waveform (레이더 전파의 왜곡현상에서 오는 탐지 오류 저감 방안 연구)

  • Kim, Jin Hieu;Kim, ChangEun;Lee, Yong-Soo
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • $21^{st}$ century is digitally civilized era. Technologies such as AI, Iot, Big Data, Mobile and etc makes this era digitally advanced. These advancement of the technology greatly impacted detection range of the radar. Human's eye sight can see about 20Km and hear 20 ~ 20000 Hz. These limitations can be overcome using radar. This radar technology is used in military, aircraft, ship, vehicle and etc. to replace human eye. However, radar technology is capable of making False Alarm Rate. This document will propose the fix of these problems. Radar's distortion includes beam refraction, diffraction and reflection. These inaccurate data result in deterioration of human judgements and my cause various casualties and damages. Radar goes through annual testing to test how many false alarm is being produced. Normal radar usually makes 10 to 20 False alarms. In emergency situation, if operator were to follow this false alarm, this might result in following false object or take 12 more seconds to follow the right object. This problem can be overcome by using different radar data from different places and angles. This helps reduces False Alarm rate and track the object twice as fast.

Histogram-Based Singular Value Decomposition for Object Identification and Tracking (객체 식별 및 추적을 위한 히스토그램 기반 특이값 분해)

  • Ye-yeon Kang;Jeong-Min Park;HoonJoon Kouh;Kyungyong Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.29-35
    • /
    • 2023
  • CCTV is used for various purposes such as crime prevention, public safety reinforcement, and traffic management. However, as the range and resolution of the camera improve, there is a risk of exposing personal information in the video. Therefore, there is a need for new technologies that can identify individuals while protecting personal information in images. In this paper, we propose histogram-based singular value decomposition for object identification and tracking. The proposed method distinguishes different objects present in the image using color information of the object. For object recognition, YOLO and DeepSORT are used to detect and extract people present in the image. Color values are extracted with a black-and-white histogram using location information of the detected person. Singular value decomposition is used to extract and use only meaningful information among the extracted color values. When using singular value decomposition, the accuracy of object color extraction is increased by using the average of the upper singular value in the result. Color information extracted using singular value decomposition is compared with colors present in other images, and the same person present in different images is detected. Euclidean distance is used for color information comparison, and Top-N is used for accuracy evaluation. As a result of the evaluation, when detecting the same person using a black-and-white histogram and singular value decomposition, it recorded a maximum of 100% to a minimum of 74%.