• Title/Summary/Keyword: 최대 지진규모

Search Result 110, Processing Time 0.029 seconds

Evaluation of Peak Ground Acceleration Based on Seismic Design Standards in Sejong City Area Using Gyeongju-Pohang Type Design Seismic Waves (경주·포항형 설계지진파를 활용한 세종시 지역의 내진설계기준 지표면최대가속도 성능평가)

  • Oh, Hyun Ju;Lee, Sung Hyun;Park, Hyung Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.41-48
    • /
    • 2024
  • In 2017, the Ministry of the Interior and Safety conducted research for the revision of seismic design standards and performed studies on standard design response spectra. As a result, the Common Application Guidelines for Seismic Design Standards were introduced, and these guidelines have been implemented in the national design standards of the Ministry of Land, Infrastructure, and Transport for practical use. However, it should be noted that the research for proposing standard design response spectra during the 2017 revision was conducted before the occurrence of the significant seismic events in South Korea, such as the 2016 Gyeongju Earthquake and the 2017 Pohang Earthquake. To account for these recent major earthquakes, this study adjusted the standard design spectra based on the records of the 2016 Gyeongju Earthquake and the 2017 Pohang Earthquake and conducted ground response analyses accordingly. The results revealed variations in peak ground acceleration (PGA) at the ground surface even within the same ground classification. It was confirmed that this variation can lead to overestimation or underestimation of seismic loads.

Analytical Verification of Seismic Reinforcement Effect of Port Breakwater during Earthquake (지진시 항만 방파제의 내진보강 성능에 관한 해석적 검증)

  • Yihyuk Kwon;Hyeok Seo;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.657-671
    • /
    • 2023
  • As large-scale earthquakes have occurred in Korea and their aftermath continues to be felt, laws and regulations on seismic design have been emphasized, and in Korea, the seismic design standards have been newly revised after the Gyeongju earthquake. In the revised seismic design standards, a stability review for the destruction of the support activity of the breakwater was newly added. Therefore, in this study, we conducted a stability analysis on the seismic reinforcement method for the study site, and checked the ground acceleration of the subgrade and the displacement of the structure over time. As a result of the stability analysis, the safety factor increased by at least 0.5 and up to 1.7. As a result of the time history analysis, the displacement of the superstructure decreased by up to 290 mm and down to 12 mm in both the shallow and deep sections before and after reinforcement, and the ground acceleration decreased by up to 5.33 m/s and down to 0.31 m/s after reinforcement.

Seismic Performance-Based Design for Breakwater (방파제의 성능기반 내진설계법)

  • Kim, Young-Jun;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.91-101
    • /
    • 2022
  • The 1995 Kobe earthquake caused a massive damage to the Port of Kobe. Therefore, it was pointed out that it was impossible to design port structures for Level II (Mw 6.5) earthquakes with quasi-static analysis and Allowable Stress Design methods. In Japan and the United States, where earthquakes are frequent, the most advanced design standards for port facilities are introduced and applied, and the existing seismic design standards have been converted to performance-based design. Since 1999, the Korean Port Seismic Design Act has established a definition of necessary facilities and seismic grades through research on facilities that require seismic design and their seismic grades. It has also established a performance-based seismic design method based on experimental verification. In the performance-based seismic design method of the breakwater proposed in this study, the acceleration time history on the surface of the original ground was subjected to a fast Fourier transform, followed by a filter processing that corrected the frequency characteristics corresponding to the maximum allowable displacement with respect to performance level of the breakwater and the filtered spectrum. The horizontal seismic coefficient for the equivalent static analysis considering the displacement was calculated by inversely transforming (i.e., subjected to an inverse fast Fourier transform) into the acceleration time history and obtaining the maximum acceleration value. In addition, experiments and numerical analysis were performed to verify the performance-based seismic design method of breakwaters suitable for domestic earthquake levels.

Comparison of Backgroud Noise Characteristics between Surface and Borehole Station of Hwacheon (화천 지진관측소 지표와 시추공의 배경잡음 특성 비교)

  • Yun, Won Young;Park, Sun-Cheon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • To look into site characteristics of the Hwacheon borehole seismic station, we analyzed property of earthquake and microtremor recorded on surface and borehole seismometers. Acoording to analysis result of microtremor, the surface-to-borehole energy ratio was approximately 15 times greater during the daytime than during the nighttime, and the surface-to-borehole ratios of spectral amplitudes as frequency increases. For earthquake data, amplitude spectra and dominant frequency were computed using surface and borehole data. As a result, small earthquakes with short distance recorded on surface seismometer peaked at 8 Hz, 46 Hz. This result corresponds to resonance frequencies (7.4 Hz, 46 Hz) calculated by H/V spectral ratio. We confirmed amplification effect by site characteristics of overburden. Background noise level was approximately 20,000 times smaller at borehole seismic station than surface seismic station. These results provide strong evidence for the superior recording of earthquakes using borehole seismometers instead of surface seismometers.

Analysis on the Damage and Intensity of the 13 December 1996 Yeongweol Earthquake (1996년 12월 13일 영월지진의 피해 및 진도 분석)

  • 경재복;이기화
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.165-184
    • /
    • 1996
  • The earthquake(M=4.5 by KMA), which occurred in the northeastern part of Yeongweol($37^{\circ}$ 15.75' N, $128^{\circ}$ 42.13' E) on December 13, 1996, shows shallow focal depth(about 8.0km) and relatively large felt area covering most of the southern peninsula. This is the first medium-size earthquake in inland region of the southern peninsula since 1978. It did not trigger foreshock but 13 aftershocks($M{\;}{\geq}{\;}2.5$) for a month. The intensity based on the felt area estimation of about 400 places shows MIMI III-VII in inland region, II on Cheju Island and I on ulreung Island. The isoseismal of MIMI VII shows an elongated circle in the direction of NE-SW and covers some parts of Jungdong-myon, Yeongweol-kun, Sindong-eup and Nam-myun, Jeongseon-kun. There occurred quite strong shaking, numerous cracks on the walls of buildings, falling and movement of slate and tiles on the roofs, falling of tiles from the wall and falling of materials from desks, rock falling from mountain and collapse of gravel layers on the river side. Mainshock and aftershocks occurred condensely between Yemi and Hwaam areas. The felt area due to the Yeongweol earthquake is Quite larger than those of similar size earthquakes in the Korean Peninsula.

  • PDF

Analysis of the Occurrence Characteristic of Earthquake-Induced Landslide through a Media Report : Focus on International Cases Reported in Domestic Media During the 10 years (2009-2018) (언론보도를 통한 지진에 의한 산사태 발생특성 분석 : 최근 10년(2009-2018)간 국내 언론에 보도된 국외사례를 중심으로)

  • Kang, Minjeng;Kim, Kidae;Seo, Junpyo;Woo, Choongshik;Lee, Changwoo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.440-448
    • /
    • 2020
  • Purpose: Most of the studies in the country on earthquake-induced landslide predict the displacement of the slope. Until now, no studies have been conducted on the occurrence of landslides and damage characteristics by earthquakes. Therefore, this study was conducted to obtain basic data of landslides caused by earthquakes. Method: In order to analyze the characteristics of earthquake-causing landslides, we have collected data reported in the media over the past decade. Landslides in foreign countries were analyzed separately by cause of occurrences such as rainfall and earthquake. Landslides from abroad were analyzed according to the cause of the occurrence, and landslides caused by earthquakes were further analyzed as follows: the magnitude of an earthquake, year of occurrence, number of occurrences by continent, damage status, etc. Result: In the past 10 years, a total of 608 landslides have been reported from overseas, and the cause is the highest with 340 landslides due to rainfall. There were 70 cases of landslides caused by earthquakes, and it was analyzed as the second cause of landslides. The average magnitude for earthquakes that caused landslides was 6.5, and the minimum and maximum magnitude were 4.4 and 8.2 respectively. The earthquake-induced landslides were the most occurrence in 2011yr and 2012yr, and the continent was the most common in Asia. Also, It was analyzed that if an earthquake caused landslides, the number of casualties increased and the size of the damage increased. Conclusion: Currently, earthquakes are steadily increasing in Korea, and the possibility of strong earthquakes is also increasing. Earthquake-induced landslides are beyond human control due to natural disasters but can minimize damage through active prevention and response. It is expected that the results of this study will be used as basic data in establishing measures for earthquake landslides to reduce property and human damage in the future.

Application of Dimensional Expansion and Reduction to Earthquake Catalog for Machine Learning Analysis (기계학습 분석을 위한 차원 확장과 차원 축소가 적용된 지진 카탈로그)

  • Jang, Jinsu;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.377-388
    • /
    • 2022
  • Recently, several studies have utilized machine learning to efficiently and accurately analyze seismic data that are exponentially increasing. In this study, we expand earthquake information such as occurrence time, hypocentral location, and magnitude to produce a dataset for applying to machine learning, reducing the dimension of the expended data into dominant features through principal component analysis. The dimensional extended data comprises statistics of the earthquake information from the Global Centroid Moment Tensor catalog containing 36,699 seismic events. We perform data preprocessing using standard and max-min scaling and extract dominant features with principal components analysis from the scaled dataset. The scaling methods significantly reduced the deviation of feature values caused by different units. Among them, the standard scaling method transforms the median of each feature with a smaller deviation than other scaling methods. The six principal components extracted from the non-scaled dataset explain 99% of the original data. The sixteen principal components from the datasets, which are applied with standardization or max-min scaling, reconstruct 98% of the original datasets. These results indicate that more principal components are needed to preserve original data information with even distributed feature values. We propose a data processing method for efficient and accurate machine learning model to analyze the relationship between seismic data and seismic behavior.

Dynamic Response Analysis of Offshore Guyed Tower Subjected to Strong Earthquake under Moderate Random Waves (지진과 파랑하중을 동시에 받는 해양 가이드 타워의 비정상 동적 응답해석)

  • Ryu, Chung Son;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.65-75
    • /
    • 1993
  • Presented is a method for nonstationary response analysis of an offshore guyed tower subjected to strong earthquake motions under moderate random waves and current loadings. By taking the time varying envelope function and the auto-correlation function of the ground acceleration in terms of complex exponential functions, an analytical procedure is developed for computing time varying variances of the tower response. The stationary responses due to small random waves are obtained by using frequency domain method, and the results are combined with the nonstationary results due to earthquakes. Finally, the expected maximum responses are estimated. Through the example analyses, the nonstationary method developed in this study is verified, and the contributions of the earthquake, wave and current loadings to the total maximum response are investigated.

  • PDF

Analysis of Korea's Crustal Movement Velocity After the Great Tohoku-Oki Earthquake by Using GPS (GPS를 이용한 토호쿠 대지진 이후 한반도 지각변동 속도 분석)

  • Ha, Ji-Hyun;Lee, Myong-Kun;Cho, Young-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.600-608
    • /
    • 2013
  • The great Tohoku-oki earthquake which occurred on March 11, 2011, caused crustal movements in both Korea and Japan. This study attempts to analyze velocity changes of crustal movement of Korea Peninsula due to the Tohoku-oki earthquake and to compare the calculation with precious crustal movenents of Korea Peninsula. We found that the crustal movement velocity of South Korea increased 3.9 mm/yr northward and 7.5 mm/yr eastward on average as a result of the Tohoku-oki earthquake; when this figure is compared with the past crustal movement velocities of the Korea Peninsula.

Characteristics of short term changes of groundwater level and stream flow rate during 2017 Pohang earthquakes (2017 포항 지진시 단기간 지하수위 변동 및 하천 유량 변화 특성)

  • Choi, Myoung-Rak;Lee, Ho-Jeong;Kim, Gyoo-Bum
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.557-566
    • /
    • 2018
  • Pohang earthquake (Main shock magnitude = 5.4) occurred in Southeastern region of South Korea in November 15, 2017. Groundwater levels of 6 monitoring wells with 5 minutes interval measurements located in that region and stream water levels of 4 stations located along the Hyeongsan-gang stream are used for the analysis of earthquake induced effects. Four groundwater monitoring wells show a short-term decrease of groundwater level after a main shock and one well does an increase and the maximum change is about 42.0 cm. Especially, groundwater levels at two monitoring wells near the epicenter are consistently maintained after a decrease. There is little relationship between earthquake magnitude or a distance to epicenter and changing amount of groundwater level and it may be due to the inhomogeneity of geologic material and unconsolidated sediments distribution. The changes in permeability of fractured zone and groundwater levels occasionally cause changes in stream flow rate, and water level of the Hyeongsan-gang stream in the study area decreases just after the earthquake and increases again up to the normal level and next shows an more gentle decreasing slope. Total increasing flow rates at S1 (upstream site) and S4 (downstream site) stations are about $12,096m^3$ and $116,640m^3$, respectively, during the increasing period.