• Title/Summary/Keyword: 최대 전력 추적

Search Result 93, Processing Time 0.018 seconds

A Study on Micro-Converter of Photovoltaic System for Efficiency Progress (태양광발전시스템의 효율 향상을 위한 마이크로컨버터에 관한 연구)

  • Chae, Young-Kee;Lim, Jung-Yeol
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.159-164
    • /
    • 2014
  • This paper targets the development of micro-converter such as a power converter for photovoltaic module. In corresponding to the poor performance of centralized PV system under partial shading, the power converter for single PV module to maximize the energy harvest from PV module. The power converter is constantly tracking the maximum power point of photovoltaic system and increases energy output power. To minimize the quantity of devices and switchs, 320W solar micro-converter is developed using synchronous rectifier. From the basis of these results, through simulations and experiments were verified efficiency.

Power system Design of KITSAT-4 Satellite (과학위성 1호 전력계 설계)

  • 김일송;이준영;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.475-483
    • /
    • 2000
  • This paper describes designs about the power system of KITSAT-4 satellite. The KITSAT-4 power system is mainly composed of power stage and control stage. The power stage is a 200〔W〕 buck converter and control stages are hardware controller and software controller The hardware controller is PPT(Peak Power Tracker), battery voltage controller and software controller is battery current controller and direct duty controller. So the operation of power system has many advantages in that it can select controller according to reliable control and precise control. The controller design methods are presented and the small signal analyses are performed to verify system stability.

  • PDF

A Study on the Power Converter Control of Utility Interactive Photovoltaic Generation System (계통 연계형 태양광 발전시스템의 전력변환기 제어에 관한 연구)

  • Na, Seung-Kwon;Ku, Gi-Jun;Kim, Gye-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2009
  • In this paper, a photovoltaic system is designed with a step up chopper and single phase PWM(Pulse Width Modulation) voltage source inverter. Where proposed Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature because solar cell has typical voltage and current dropping character. The single phase PWM voltage source the inverter using inverter consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be developed continuously by connecting with the source of electric power for ordinary use. It can cause the effect of saving electric power. from 10 to 20[%]. The single phase PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. In order to enhance the efficiency of photovoltaic cells, photovoltaic positioning system using sensor and microprocessor was design so that the fixed type of photovoltaic cells and photovoltaic positioning system were compared. In result, photovoltaic positioning system can improved 5% than fixed type of photovoltaic cells. In addition, I connected extra power to the system through operating the system voltage and inverter power in a synchronized way by extracting the system voltage so that the phase of the system and the phase of single-phase inverter of PWM voltage type can be synchronized. And, It controlled in order to provide stable pier to the load and the system through maintaining high lurer factor and low output power of harmonics.

Photo-sensorless dual-axis solar tracking system combined with IoT platform (IoT플랫폼이 결합된 광센서가 없는 태양광 추적 시스템)

  • Jung, Deok-Kyeom;Jeon, Jong-Woon;Park, Sung-Min;Chung, Gyo-Bum
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.664-671
    • /
    • 2018
  • Generally, conventional solar tracking systems employ irradiance sensors to track a sun position, which enables the system to generate maximum solar energy. The usage of irradiance sensors increases system costs and deteriorates the performance of systems from sensor malfunctions. In this paper, a new solar tracking system without irradiance sensors has been proposed in which the controller capable of controlling and monitoring remotely is based on Artik platform. The proposed system tracks the sun position by comparing the amount of currents from several solar panels, resulting in removing irradiance sensors. In order to verify the performance of the proposed solar tracking method, the 12[V]-20[W] prototype system is built and implemented. Since the proposed system has remote monitoring functions through the employment of Artik as the IoT platform, more advantages in installation, maintenance and expanded functionality can be obtained compared to the conventional solar tracking system.

A Study on AC/DC Power Converter of Energy Harvesting for Considered to Solar Position Tracking Control (태양광 위치 추적 제어를 고려한 에너지 Harvesting AC/DC 전력 변환기 구동에 관한 연구)

  • Na, Seung-Kwon;Ku, Gi-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.56-66
    • /
    • 2014
  • In this paper, the solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change and it is necessary to control the output of solar cells up to the time. Simulation and composed microprocessor and sensor chip an power conversion system with boost converter to experiment results are performed to prove the analysis of the converter operation, and to show the possibility of energy harvesting and photovoltaic development need the position tracking small capacitance, the boost rate of boost converter was similar to 167 percent.

Appliction of Separate-Excitation Inverter for Photovoltaic Power Generation System (타여식 인버터의 태양광발전시스템의 응용)

  • Yu, Gwon-Jong;Jeon, Hong-Seok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.140-150
    • /
    • 1993
  • This paper describes technical details of Separate Excitation Inverter(SEI) application for the photovoltaic system. Depending on the output characteristics of solar cell modules, optimum control for the maximum electricity generation of photovoltaic system could be determined. New control mechanism of Separate Excitation Inverter for the Photovoltaic-Diesel Hybrid Generator was tested and examined. Results of this paper describe that maximum out of solar cell array could be obtained at two points. Therefore the two point control method was applied and verified between, the theory and the experiment.

  • PDF

A Study on the Utility Interactive Photovoltaic System using a Chopper and a PWM Inverter (쵸퍼와 PWM 전압형 인버터를 이용한 계통연계형 태양광발전시스템에 관한 연구)

  • 유택빈;성낙규;이승환;김성남;이훈구;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.131-137
    • /
    • 1998
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuated on the variation of insolation, temperature and load. Photovoltaic system needs an inverter which can interface the dc output power of solar cell with the residential ac load. The inverter has to supply a sinusoidal current and voltage to the load and the utility line with a high power factor. This paper proposes an utility interactive photovoltaic system designed with a step-up chopper and a PWM voltage source inverter. The step-up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power points of solar cell without any influence on the variation of insolation and temperature. The voltage source inverter operates in a manner that its output voltage is in phase with the utility voltage. The inverter supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

A Study on the Charge Controller for Solar Street Lamp by Direct Duty Ratio Control (다이렉트 듀티비 제어에 의한 태양광 가로등용 충전제어기에 관한 연구)

  • Jang, Han-Gi;Lim, Jung-Yeol
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.118-123
    • /
    • 2015
  • According to the recent report, solar street lamp connected to a non Maximum Power Point Tracking(MPPT) charger, can lead to a system-wide decline in power output with as much as 30%. This paper proposes the charge controller with direct duty ration control for 250W solar street lamp in order to improve the efficiency of photovoltaic from these output power reduction. This paper covers the Pulse Width Modulation(PWM) controller and power conversion topology and analyze the MPPT method for charge controller. The power conversion part consists of push pull converter based on PWM controller using 8bit MCU in order to have lower manufacturing cost. The PWM controller with direct duty ratio control algorithm is constantly tracking the maximum power point of photovoltaic module and increases energy output power. The test results shows 97.1~97.4% MPPT efficiency and the experimental hardware is implemented based on the solar simulator condition for 241W. Thus, the implemented charge controller shows its feasibility for the real application, especially under solar street lamp.

Development of Power Supply for Small Anti-air Tracking Radar (소형 대공 추적레이다용 전원공급기 개발)

  • Kim, Hongrak;Kim, Younjin;Lee, Wonyoung;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.119-125
    • /
    • 2022
  • The power supply for the anti-aircraft radar homing sensor should allow the system to receive power quickly and stably without the influence of noise. For this purpose, DC-DC converters are widely used for reliable power conversion. Also, switching of DC-DC converters Frequency noise should not cause false alarms and ghosts that may affect the detection and tracking performance of the system, and it should have a check function that can monitor power in real time while the homing sensor is operating. In order to apply to anti-aircraft radar homing sensor, we developed a multi-output switching power supply with maximum output 𐩒𐩒𐩒 W, efficiency 80% or more (@100% load), output power by receiving 28VDC input, and power supply to achieve more than 80% efficiency. A DC-DC converter was applied to this large output, and the multi-output flyback method was applied to the rest of the low-power output.

Resistive Current Mode Control for the Solar Array Regulator of SPACE Power System (인공위성 시스템을 위한 태양전지 전력조절기의 저항제어)

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.535-542
    • /
    • 2006
  • A large signal stability analysis of the solar array regulator system is performed to facilitate the design and analysis of a Low-Earth-Orbit satellite power system. The effective load characteristics of every controllable method in the solar array system are classified to analyze the large signal stability. Then, using the state plane analysis technique, the stability of various equilibrium points is analyzed. A nonlinear transformation algorithm, which changes the effective load characteristic of the solar array regulator as constant resistive load, is also proposed for the large signal stability. The proposed resistive current mode control system can control the solar array output for purposes such as peak power tracking control and battery charging control. For the verification of the proposed large signal analysis and resistive current mode control, a solar array regulator system consisting of two 100W parallel module buck converters has been built and tested using a real 200W solar array.