• Title/Summary/Keyword: 최대 전단변형율

Search Result 33, Processing Time 0.027 seconds

Impact Analysis According to Material of Hand Phone (휴대폰 재질에 따른 충격 해석)

  • Cho, Jae-Ung;Min, Byoung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.69-75
    • /
    • 2009
  • This study is analyzed by impact simulation according to material property at terminal case of hand phone. Maximum equivalent stress or strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest stress or strain is shown at aluminium alloy. The value of maximum equivalent stress is shown as 6.5 Mpa in case of plastic, magnesium alloy and aluminium alloy. Maximum shear strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest strain is shown at aluminium alloy. The value of deformation or strain at magnesium alloy and aluminium alloy is not different.

  • PDF

A Suggestion of an Empirical Equation for Shear Modulus Reduction Curve Estimation of Sandy Soils (사질토 전단탄성계수 감소곡선 산정을 위한 경험식 제안)

  • Park, Dug-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.126-126
    • /
    • 2002
  • In dynamic analyses such as seismic ground response and soil-structure interaction problems, it is very crucial to obtain accurate dynamic shear modulus of soil deposit. In this study, an extensive data base of available experimental data is compiled and reanalyzed to establish a simple empirical formula for the dynamic shear modulus reduction curve to cover wide range of strain for sandy soils. The proposed empirical equation is to represent the dynamic shear modulus degradation with strain in terms of low-amplitude dynamic shear modulus and effective mean confining Pressure, since those factors have the most significant effect on the Position and shape of the shear modulus reduction curve for nonelastic soils. If low-amplitude shear modulus is measured, degraded modulus at any shear strain amplitude can be calculated using the proposed equation.

A Suggestion of an Empirical Equation for Shear Modulus Reduction Curve Estimation of Sandy Soils (사질토 전단탄성계수 감소곡선 산정을 위한 경험식 제안)

  • Park, Dug-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.127-138
    • /
    • 2002
  • In dynamic analyses such as seismic ground response and soil-structure interaction problems, it is very crucial to obtain accurate dynamic shear modulus of soil deposit. In this study, an extensive data base of available experimental data is compiled and reanalyzed to establish a simple empirical formula for the dynamic shear modulus reduction curve to cover wide range of strain for sandy soils. The proposed empirical equation is to represent the dynamic shear modulus degradation with strain in terms of low-amplitude dynamic shear modulus and effective mean confining Pressure, since those factors have the most significant effect on the Position and shape of the shear modulus reduction curve for nonelastic soils. If low-amplitude shear modulus is measured, degraded modulus at any shear strain amplitude can be calculated using the proposed equation.

Effect of Duration of Confinement and Its Affecting Factors on the Low-Amplitude Shear Modulus ($G_{max}$) of Soils (토질 최대전단탄성계수($G_{max}$)에 미치는 시간지속효과 및 그 영향요소에 관한 연구)

  • 박덕근
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 1999
  • Dynamic Shear modulus (G) is one of the imfortant dynamic soil properties to estimate the response of soil to dynamic loading. Problems in engineering geo1ogy practice the require the knowledge of soil properties subjected to dynamic loadings include soil-structure interaction during earthquakes, bomb blasts, construction operations, and mining. Although the dynamic shear modulus (G) is a time-dependent property, G change with time is often neglected. In this study, the effect of duration of confinement and its affecting factors (previous stress and strain, particle size and sustained pressure, and plasticity index) on the low-amplitude shear modulus ($G_{max}$) of soils are reviewed, and some empirical correlations based on mean particle diameter and plasticity index are proposed.

  • PDF

Modifications of RC/TS(Resonant Column and Torsional Shear) Device for the Large Strain (대변형율 시험을 위한 공진주 비틂전단 시험기의 수정)

  • Bae, Yoon-Shin
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.1-10
    • /
    • 2008
  • Conventional RC/TS(resonant column and torsional shear) device usesa specimen with an aspect ratio(height-to-diameter) of 2:1 and this generates a maximum shear strain in the sample of about 1.5% at the maximum rotation of the drives system. The objective of this study is to modify RC/TS device to generate higher strain amplitude. The modifications include a new base pedestal to overcome the limitations in the travel of the drive system and modification of coil wiring to increase torque. The effects of the new coil wire on torque in the electro magnetic drive system were evaluated and the application of modified device was illustrated using sand soil.

  • PDF

Geosynthetic Embankment Stability on Soft Ground Considering Reinforcement Strain (보강재의 변형을 고려한 연약지반위 섬유보강성토제체의 안정해석)

  • 이광열;정진교;황재홍;홍진원;안용수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.867-874
    • /
    • 2003
  • 섬유보강재를 이용한 성토제체의 설계에서 기존의 방법은 보강재의 변형을 무시하고 흙의 변형만을 중요시하고 있다. 보강재에 의해 보강된 성토제체의 파괴면에서 보강재와 흙의 거동은 초기응력단계에서는 일체거동현상을 나타내지만 응력의 증가에 따라 변형량에서 차이를 보인다. 이러한 문제는 토공구조물의 보강재를 설계하는데 있어서 중요한 요소로서 보강효과에 큰 영향을 미칠 수 있다. 본 연구에서는 연약지반 위에 PET Mat로 보강하여 축조한 성토제체에서 보강재와 흙의 응력 - 변형거동을 수치해석을 통하여 분석하였다. 연구결과, 파괴면에서 보강재의 변형은 보강재의 인장강도 크기에 따라 큰 차이를 보이고 있다. 외부하중에 의해 보강재에 발생하는 최대응력은 보강재의 항복인장강도를 초과하지 않으며, 보강재에 발생하는 응력이 성토체에서 발생하는 응력이상일 때 이상적인 것으로 나타났다. 또한 제체의 전단파괴에 대한 안전율은 보강재의 항복인장강도가 증가할수록 증가하는데 보강재와 흙의 변형이 일치되는 이후부터는 안전율의 증가율은 거의 미미한 것으로 나타났다.

  • PDF

Development of Strain-softening Model for Geosynthetic-involved Interface Using Disturbed State Concept (DSC를 이용한 토목섬유가 포함된 경계면의 변형율 연화 모델 개발)

  • Woo, Seo-Min;Park, Jun-Boum;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.223-232
    • /
    • 2003
  • In this study, a constitutive model called the disturbed state concept (DSC) was modified to be applied to the interface shear stress-displacement relationship between geosynthetics. The DSC model is comprised of two reference states, namely the relative intact (RI) and the fully adjusted (FA) state, and one function, namely the disturbance function. This model is a unified approach and can allow for various models as an RI state such as elastic-perfectly plastic model, hierarchical model, and so on. In addition, by using this model, the elastic and plastic displacements can be considered simultaneously. Comparisons between the measured data and predicted results through the parameters determined from four sets of large direct shear tests showed good agreements with each other, especially for the smooth geomembrane-involved interface. Although there are slight differences at peak shear strength for textured geomembrane-involved interface, this model can still be useful to predict the position of displacement at peak strength and the large displacement (or residual) shear strength.

The Characteristics of Shearing Resistance of Silicate-Grouted Soils (물유리계 약액고결토의 전단저항특성)

  • 정형식;류재일
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.45-55
    • /
    • 1988
  • Chemical grouting is one of the ground.improvement methods for the purpose of cutting o($\boxUl$ water and increasing the strength of soil. It has ben reported that the effect of strength increasement of groued roils is due to increase of cohesion. In this study, the effect of cohesion on the shearing resistance of grouted soil 9.as intr.estigated tall.ouch triaxial compression test. According to the result of this research, It is found that the improved cohesion increases rapidly up to the maximum value at a small strain and subsequent decrease of cohericn is due to the breaking of grout chemical at a larger strain.

  • PDF

Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio (그라우트 주입율 변화에 따른 사질토의 동적계수 특성)

  • Ahn, Kwangkuk;Park, Junyoung;Oh, Jonggeun;Lee, Jundae;Han, Kihwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • Ground dynamic parameter such as shear elastic modulus and damping ratio is a very important variable in design of ground-structure with repeated load and dynamic load. Shear elastic modulus and damping ratio on small strain below linear limit strain is constant regardless of strain. Shear elastic modulus as the maximum shear elastic modulus and damping ratio as the minimum damping ratio were considered. As a lot of experiment related to the maximum shear elastic modulus, which is in dynamic deformation characteristics, have been conducted, many factors including voiding ratio, over consolidation ratio(OCR), confining pressure, geology time, PI, and the number of load cycle affect to dynamic soil characteristic. However, the research of ground dynamic characteristic improved with grout is absent such as underground continuous wall construction, deep mixing method, umbrella arch method. In order to investigate the dynamic soil characteristics improved with grout, in this study, resonant column tests were performed with changing water content(20%, 25%, 30%) and injection ratio of grout(5%, 10%, 15%), cure time(7th day, 28th day) As a result, shear elastic modulus and damping ratio, which are ground dynamic parameter, are affected by the injection ratio of milk grout, cure time and water content.

Prediction of Lateral Flow due to Embankments for Road Construction on Soft Grounds with Vertical Drains (연직배수재가 설치된 연약지반 상에 도로성토로 인한 측방유동 발생 예측)

  • Hong, Won-Pyo;Kim, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.239-247
    • /
    • 2012
  • Some methods were proposed to predict lateral flow due to embankments for road constructions on soft grounds, in which vertical drains were placed. In order to investigate the prediction methods of lateral flow, 200 field monitoring data for embankments in thirteen road construction sites at western and southern coastal areas of the Korean Peninsula were analyzed. For analyzing the relationship between the safety factor of embankment slope and the horizontal displacement in soft grounds where horizontal drain mats were placed, it was reliable to apply the maximum horizontal displacement in soft ground instead of the horizontal displacement at ground surface. The maximum horizontal displacement was developed less than 50mm in fields where the safety factor of slope was more than 1.4, while the one was developed more than 100mm in fields where the safety factor of slope was less than 1.2. In safe fields where the maximum horizontal displacement were developed within 50mm, lateral flow would not happen since shear deformation was not appeared. On the other hand, shear failure would happen in the fields where the maximum horizontal displacement were developed more than 100mm. In such fields, embankments might be continued after some appropriate countermeasures should be prepared. Safe embankments can be performed on soft grounds, in which the stability number is less than 3.0 and the safety factor for bearing is more than 1.7. However, if the stability number is more than 4.3 and the safety factor for bearing is less than 1.2, shear deformation would begin and even shear failure would happen.