• Title/Summary/Keyword: 최대 응력

Search Result 1,504, Processing Time 0.04 seconds

Assessment of a Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • Choi, Jong-Won;Cho, Dong-Keun;Lee, Yang;Choi, Heui-Joo;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.41-50
    • /
    • 2006
  • In this paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm-container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by $\sim20$ tons.

  • PDF

A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling (터널근접시공에 의한 기 존재하는 인접말뚝의 거동에 지반보강이 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Sung-Hee;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.389-407
    • /
    • 2017
  • In the current work, a series of three-dimensional finite element analysis was carried out to understand the behaviour of pile when the tunnel passes through the lower part of a single pile or group piles. At the current study, the numerical analysis analysed the results regarding the ground reinforcement condition between the tunnel and pile foundation. In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the total displacements near the tunnel have been thoroughly analysed. The pile head settlements of the single pile with the maximum level of reinforcement decreased by about 16% compared to the pile without ground reinforcement. Furthermore, the maximum axial force of the single pile with the maximum level of ground reinforcement experienced a 30% reduction compared to the pile without reinforcement. It has been found that the angle of ground reinforcement in the transverse direction affects the pile behaviour more so than the length of the ground reinforcement in the longitudinal direction. On the other hand, in the case of the pile group with the reinforced pile cap, the ground displacement near the pile tip appears to be similar to the corresponding ground displacement without reinforcement. However, it was found that the pile cap near the pile head greatly restrained the pile head movement and hence the axial pile force increased by about 2.5 times near the pile top compared to the piles in other analysis conditions. The behaviour of the single pile and group piles, depending on the amount of ground reinforcement, has been extensively examined and analysed by considering the key features in great details.

The High Temperature Deformation Behavior of the Wrought Superalloy 718 (단조용 초내열 718 합금의 고온 변형 거동)

  • Na, Y.S.;Choe, S.J.;Kim, H.M.
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.179-191
    • /
    • 1996
  • In order to understand the high temperature deformation behavior of superalloy 718, a rotating grade 718 alloy has been compression tested to about 0.7 upset ratio at $927{\sim}1066^{\circ}C$ temperature range and $5{\times}10^{-4}{\sim}5{\times}10^0sec^{-1}$ strain rate. The maximum flow stress was increased with increasing strain rate, and similar behavior was observed with decreasing temperature. At low temperature and high strain rates other than $5{\times}10^{-1}sec^{-1}$, strain softening was occurred mainly by dynamic recovery and deformation twinning processes, while at high temperature and low strain rates strain softening was offseted by dynamic recrystallization. At $5{\times}10^{-1}sec^{-1}$, strain hardening was occurred due to work hardening of the dynamic recrystallized grains. Strain rate sensitivity, m, was varied with strain rates. In the case of lower strain rate tests, m was measured as 0.3 and it was observed that the deformation was mainly controlled by dynamic recrystallization. At higher strain rate, m was lowered to 0.1 and the deformation was controlled by the dynamic recovery and the deformation twinning processes.

  • PDF

Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • CHO Dong-Keun;CHOI Jongwon;Lee Yang;CHOI Heui-Joo;LEE Jong-Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.153-162
    • /
    • 2005
  • In this Paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by ${\~}$20 tons.

  • PDF

Quality characteristics of rice noodles with organic acid and thickening agents (유기산과 증점제를 첨가한 쌀국수의 품질 특성)

  • Kim, Ki-Sun;Han, Chi-Won;Joung, Kyung-Hee;Lee, Seung-Kee;Kim, Ae-Jung;Park, Won-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1148-1156
    • /
    • 2009
  • In order to manufacture noodles using rice flour as its main ingredient, organic acid and thickening agents have been used, and protein, dextrin, and refined salt have added. The rice flour dough that had been baked using organic acids and thickening agent showed the max weight of $2040.00\;g/cm^2$, elasticity value of 139.12%, cohesiveness of 66.05%, chewiness of 1,396.13g, and brittleness of 190,456.12g respectively. The appropriate conditions for manufacturing rice noodle using rice flour were that the rice was to be soaked for 12 hours at temperature of $20{\sim}25^{\circ}C$ and to be milled twice at temperature lower than $35^{\circ}C$. Additionally, the most ideal condition to manufacture noodles was to use the rice flour by combining protein, dextrin and refined salt using 3.88% organic acid blend and 2.82% blend of thickening agents in order to change the rice flour properties

Numerical Simulation of Sloshing Test for Fuel Tank of Rotorcraft (회전익항공기용 연료탱크 슬로싱 시험 수치해석)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.687-693
    • /
    • 2016
  • The rapid turning and acceleration movement of a rotorcraft leads to a sloshing phenomenon in the fuel tank. Sloshing caused by rapid movement can affect the internal components by creating an excessive load. In severe situations, the resulting damage to the internal components and pipes can also lead to the tearing of the fuel tank itself. Therefore, to improve the survivability of the crew, the internal components of the fuel tank must be designed to retain their structural soundness during the sloshing phenomenon. In order to accomplish this, the sloshing load acting on the components first needs to be determined. This paper investigates the sloshing load applied to the internal components by performing numerical analysis for rotary-wing aircraft fuel tanks in the sloshing test. Fluid-Structural Interaction (FSI) analysis based on smoothed particle hydrodynamics (SPH) is conducted and the conditions specified in the US military standard (MIL-DTL-27422D) are employed for the numerical simulation. Based on this numerical simulation, by analyzing the load applied to the internal components of the fuel tank due to the sloshing phenomenon, the possibility of obtaining the design data by numerical analysis is examined.

Texture Transformations and Its Role on the Yield Strength of ($\alpha$+$\beta$) Heat Treated Zircaloy-4 (($\alpha$+$\beta$) 열처리된 지르칼로이-4에서 집합조직의 변화와 그 조직이 항복 강도에 미치는 영향)

  • Yoo, Jong-Sung;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.75-85
    • /
    • 1992
  • The texture changes and their effect on the 0.2% yield strength of Zircaloy-4 sheet were examined after quenched from the ($\alpha$+$\beta$) phase temperature. When the prior ($\alpha$+$\beta$) gram size was slightly larger than that of the $\alpha$-annealed, the observed texture was similar to the $\alpha$-annealed texture having an ideal orientation of the (0001) basal pole at 30$^{\circ}$away from the normal direction toward the transverse direction. When the prior ($\alpha$+$\beta$) grain size was twice as large as that of the $\alpha$-annealed, the location of maximum basal pole intensity was distributed between the transverse and the rolling direction making an angle 15$^{\circ}$from the normal direction, and the observed texture became isotropic. It was found that the Kearns texture parameter, fr, in the rolling direction increased steadily, and fr in the transverse direction increased slightly, while fr in the the normal direction decreased with increasing heat treatment time. With a small increase in fr, the 0.2% yield strength increased drastically. The influence of texture was analyzed by deriving the Schmid orientation factors and the resolved shear stresses for the deformation systems. It was found that the large increase in the 0.2% yield strength was attributed mainly to the microstructural changes and partly to the texture changes by the ($\alpha$+$\beta$) heat treatment.

  • PDF

Computational Optimization for RC Columns in Tall Buildings (초고층 철근콘크리트 기둥의 전산최적설계 프로세스)

  • Lee, Yunjae;Kim, Chee-Kyeong;Choi, Hyun-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.401-409
    • /
    • 2014
  • This research develops tools and strategies for optimizing RC column sections applied in tall buildings. Optimization parameters are concrete strength and section shape, the objective function for which is subject to several predefined constraints drawn from the original structural design. For this purpose, we developed new components for StrAuto, a parametric modeling and optimization tool for building structure. The components receive from external analysis solvers member strengths calculated from the original design model, and output optimized column sections satisfying the minimum cost. Using these components, optimized sections are firstly obtained for each predefined concrete strength applied to the whole floors in the project building. The obtained results for each concrete strength are comparatively examined to determine the fittest sections which will also result in the fittest vertical zoning for concrete strength. The main optimization scenario for this is to search for the vertical levels where the identical optimized sections coincide for the two different concrete strengths in concern, and select those levels for the boundaries where a concrete strength will be changed to another. The optimization process provided in this research is a product of an intensive development designed for a specific member in a specific project. Thus, the algorithm suggested takes on a microscopic and mathematical approach. However, the technique has a lot of potential that it can further be extensively developed and applied for future projects.

A study on experiment from the Stair Joints Constructed with PC system part of it using the HI-FORM DECK (HI-FORM DECK를 이용한 부분 PC 계단 접합부의 접합방식에 따른 실험적 연구)

  • Chang, Kug-Kwan;Lee, Eun-Jin;Jin, Byung-Chang;Kang, Woo-Joo;Han, Tae-Kyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.9-12
    • /
    • 2008
  • The semi-rigid joint is the shape of middle that can supplement the defect of pin joints and accept the good point of rigid joints. Recently, a study on the pin joints is activated in the country, but because the study on semi-rigid joints is not many, this study tried to prove with producing test model of three shape. The test models are rigid joint HI-R, semi-rigid joint HI-S, pin joint HI-P. As a result of the test, respectively HI-R, HI-S, HI-P appeared shear failure of joint, flexure failure of the top fixing, flexure failure of the lower part slipping stair slab, and the maximum strength is measured to 51.74, 51.4, 24.63kN, the stiffness is appeared 1.58, 1.19, 0.37 respectively, The yield strength is respectively kept 44.5, 47.3, 24kN, and ductility ratio is appeared to 3.31, 2.32, 1.54, when is based on KBC code, sag of the acting service load is appeared that HI-P model is over the standard. When is based on distribution of bars strain ratio, HI-S seems similar behavior incipiently, but after the yield, the semi-rigid joint was able to be judged better than pin joint because of the stress allotment of joint internal elements.

  • PDF

Detail Design and Structural Stability Analysis for Automated PHC Pile Cutting Machine (PHC 파일 원커팅 두부정리 자동화 장비의 상세설계 및 구조적 타당성 분석)

  • Yeom, Dong Jun;Hwang, Ji Young;Park, Yesul;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.117-125
    • /
    • 2018
  • The primary objectives of this study are to develop a detail design of automated PHC pile head cutting machine and structural stability analysis of detail design that improves the conventional head cutting work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review and field study, 2)expert survey and interview, 3)selection of core technology using AHP analysis, 4)deduction of detail design 5) verification of structural stability. As an outcome, it is analyzed that gripper and gripper bearing shaft are structurally stable. Their maximum stresses are shown as 15.93%, 10.58% compared to their yield strength respectively. The results of detail design and structural stability analysis in this study will be utilized for the actual development of the automated PHC pile cutting machine prototype.