Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.670-672
/
2002
Park과 Zhang은 최대 엔트로피 모델(maximum entropy model)을 실제 자연언어 처리에 적용함에 있어서 나타날 수 있는 여러가지 문제를 해결하기 위한 최대 엔트로피 모델(maximum entropy boosting model)을 제시하여 문서 단위화(text chunking)에 성공적으로 적용하였다. 최대 엔트로피 부스팅 모델은 쉬운 모델링과 높은 성능을 보이는 장점을 가지고 있다. 본 논문에서는 최대 엔트로피 부스팅 모델을 영어 전치사 접속 모호성 해소에 적용한다. Wall Street Journal 말뭉치에 대한 실험 결과, 아주 작은 노력을 들였음에도 84.3%의 성능을 보여 지금까지 알려진 최고의 성능과 비슷한 결과를 보였다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.57-59
/
1999
본 논문에서는 최대 엔트로피 원리에 기반한 문서 분류기의 학습을 제안한다. 최대 엔트로피 기법은 자연언어 처리에서 언어 모델링(Language Modeling), 품사 태깅 (Part-of-Speech Tagging) 등에 널리 사용되는 방법중의 하나이다. 최대 엔트로피 모델의 효율성을 위해서는 자질 선정이 중요한데, 본 논문에서는 자질 집합의 선택을 위한 기준으로 chi-square test, log-likelihood ratio, information gain, mutual information 등의 방법을 이용하여 실험하고, 전체 후보 자질에 대한 실험 결과와 비교해 보았다. 데이터 집합으로는 Reuters-21578을 사용하였으며, 각 클래스에 대한 이진 분류 실험을 수행하였다.
Kim, Min-Woo;Kim, Dong-Hyun;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
Proceedings of the Korean Society of Computer Information Conference
/
2018.07a
/
pp.213-214
/
2018
빅 데이터 활용의 증가로 인해 효율적으로 데이터를 분류하는 것은 머신러닝의 주요 과제이다. 제한적인 자원을 가지고 이에 맞는 처리능력을 갖기 위해서는 단일 기기의 자원 관리능력을 향상시키는 방향의 연구가 필요하다. 본 논문에서는 머신러닝을 위한 학습 데이터를 최대 엔트로피 이론을 적용시켜 효과적으로 분류하는 방법을 제안한다. 최대 엔트로피에 대한 간단한 설명과 최대 엔트로피 이론을 적용시키기 위한 간단한 사전 작업들의 방향 등에 대한 설명을 토대로 기술하였다. 또한 본 연구를 통해 얻게 된 문제점들과 향후 연구에 필요한 피드백을 갖는다.
Kim, Min-Woo;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.143-144
/
2019
최대 엔트로피(Maximum Entropy)는 실증적 데이터에서 관찰된 잠재적인 여러 유용한 특징들을 기반으로 최대 엔트로피를 갖는 추정된 분포를 구축하기 위한 접근법이다. 본 논문에서는 네트워크상의 데이터 전송 시 혼잡한 흐름을 효율적으로 분류하기 위해 최대 엔트로피 알고리즘을 기반으로 한 새로운 네트워크 흐름 분류 모델을 제안한다. 제안한 알고리즘이 기존의 방법들 보다 높은 분류 정확도를 나타내는 것을 목표로 네트워크 서비스 시 효율성을 높이고자 한다.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.130-137
/
2001
최대 엔트로피 모델(maximum entropy model)은 여러 가지 자연언어 문제를 학습하는데 성공적으로 적용되어 왔지만, 두 가지의 주요한 문제점을 가지고 있다. 그 첫번째 문제는 해당 언어에 대한 많은 사전 지식(prior knowledge)이 필요하다는 것이고, 두번째 문제는 계산량이 너무 많다는 것이다. 본 논문에서는 텍스트 단위화(text chunking)에 최대 엔트로피 모델을 적용하는 데 나타나는 이 문제점들을 해소하기 위해 새로운 방법을 제시한다. 사전 지식으로, 간단한 언어 모델로부터 쉽게 생성된 결정트리(decision tree)에서 자동적으로 만들어진 규칙을 사용한다. 따라서, 제시된 방법에서의 최대 엔트로피 모델은 결정트리를 보강하는 방법으로 간주될 수 있다. 계산론적 복잡도를 줄이기 위해서, 최대 엔트로피 모델을 학습할 때 일종의 능동 학습(active learning) 방법을 사용한다. 전체 학습 데이터가 아닌 일부분만을 사용함으로써 계산 비용은 크게 줄어 들 수 있다. 실험 결과, 제시된 방법으로 결정트리의 오류의 수가 반으로 줄었다. 대부분의 자연언어 데이터가 매우 불균형을 이루므로, 학습된 모델을 부스팅(boosting)으로 강화할 수 있다. 부스팅을 한 후 제시된 방법은 전문가에 의해 선택된 자질로 학습된 최대 엔트로피 모델보다 졸은 성능을 보이며 지금까지 보고된 기계 학습 알고리즘 중 가장 성능이 좋은 방법과 비슷한 성능을 보인다 텍스트 단위화가 일반적으로 전체 구문분석의 전 단계이고 이 단계에서의 오류가 다음 단계에서 복구될 수 없으므로 이 성능은 텍스트 단위화에서 매우 의미가 길다.
Maximum entropy models are promising candidates for natural language modeling. However, there are two major hurdles in applying maximum entropy models to real-life language problems, such as prepositional phrase attachment: feature selection and high computational complexity. In this paper, we propose a maximum entropy boosting model to overcome these limitations and the problem of imbalanced data in natural language resources, and apply it to prepositional phrase (PP) attachment and part-of-speech (POS) tagging. According to the experimental results on Wall Street Journal corpus, the model shows 84.3% of accuracy for PP attachment and 96.78% of accuracy for POS tagging that are close to the state-of-the-art performance of these tasks only with small efforts of modeling.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.522-524
/
2003
품사 결정 문제는 자연언어처리의 가장 기본적인 문제들 중 하나이며, 기계학습의 관점에서 보면 분류 문제(classification problem)로 쉽게 표현된다. 본 논문에서는 품사 결정의 모호성을 해소하기 위해서 최대 엔트로피 부스팅 모델(maximum entropy boosting model)을 이 문제에 적응하였다. 그리고, 품사 결정에서 중요한 요소 중의 하나인 미지어 처리를 위해서 특별히 설계된 일차 자질을 고려하였다. 최대 엔트로피 부스팅 모델의 장점은 쉬운 모델링인데, 실제로 품사 결정을 위한 일차 자질만 작성하는 노려만 들이고도 96.78%의 정확도를 보여 지금까지 알려진 최고의 성능과 거의 비슷한 결과를 보였다.
This paper considers a panel regression model with ill-posed data and proposes the generalized maximum entropy(GME) estimator of the unknown parameters. These are natural extensions from the biometries, statistics and econometrics literature. The performance of this estimator is investigated by using of Monte Carlo experiments. The results indicate that the GME method performs the best in estimating the unknown parameters.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.4
/
pp.501-506
/
2008
Statistical POS tagging is prone to error, because of the inherent limitations of statistical data, especially single source of data. Therefore it is widely agreed that the possibility of further enhancement lies in exploiting various knowledge sources. However these data sources are bound to be inconsistent to each other. This paper shows the possibility of using maximum entropy model to Korean language POS tagging. We use as the knowledge sources n-gram data and trigger pair data. We show how perplexity measure varies when two knowledge sources are combined using maximum entropy method. The experiment used a trigram model which produced 94.9% accuracy using Hidden Markov Model, and showed increase to 95.6% when combined with trigger pair data using Maximum Entropy method. This clearly shows possibility of further enhancement when various knowledge sources are developed and combined using ME method.
Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
/
1993.07a
/
pp.125-129
/
1993
학문의 어느 분야든, 어느 분야의 어느 한 가지든 그 출발점으로 거슬러 올라 가기란 결코 쉬운 일이 아니다. 불규칙 자료의 스펙트럼분석이야 고전적인 방법이지만 그 분석방법중 Burg(1967)에 의해 제안된 엔트로피(entropy) 개념을 이용한 방법은 그 출발점을 명확하게 이해하기가 손쉽지 않다. 차제에 최대엔트로피방법(Maximum Entropy Method: MIM)을 복습하고, 그것이 어떻게 스펙트럼 추정에 응용되는가를 정리함은 나름대로 의의가 있을 것이다. (중략)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.