• 제목/요약/키워드: 최대공약수

검색결과 24건 처리시간 0.032초

확장 유클리드 알고리즘에 대한 컴퓨터 집약적 방법에 대한 연구 (Computer intensive method for extended Euclidean algorithm)

  • 김대학;오광식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1467-1474
    • /
    • 2014
  • 본 논문에서는 정수론 분야에서 가장 기초적인 방법으로 소개되는 유클리드 알고리즘과 이를 확장한 확장 유클리드 알고리즘을 소개하고 이들에 대한 컴퓨터 집약적 방법을 연구하였다. 이들 알고리즘들은 공개키 암호 분야에서 암호화의 과정에서 반드시 거쳐야 하는 과정들 중의 하나로서 그 응용성이 날로 부각되고 있다. 확장 유클리드 알고리즘에 대한 컴퓨터 집약적 방법으로서 마이크로소프트 엑셀과 C 언어를 이용하는 두 가지 방법을 각각 고안하여 제안하였다. 본 논문은 단순히 정수론 차원의 계산을 쉽고 편리하게 하기 위함만이 목적이 아니고 아주 큰 수에 대한 역원 (곱셈에 대한 역원)의 계산과 이의 공개키 암호화 활용에서 의의를 찾을 수 있다.

자바카드 기반 공개키 암호 API를 위한 임의의 정수 클래스 설계 및 구현 (Design and Implementation of Arbitrary Precision Class for Public Key Crypto API based on Java Card)

  • 김성준;이희규;조한진;이재광
    • 정보처리학회논문지C
    • /
    • 제9C권2호
    • /
    • pp.163-172
    • /
    • 2002
  • 자바카드 API는 한정된 메모리를 가진 스마트 카드 기반의 프로그램을 개발할 때 많은 이점을 제공한다. 그러나 공개키 암호 알고리즘 구현에 반드시 필요한 연산들인 모듈러 지수 연산, 최대공약수 계산, 그리고 소수 판정과 생성 등의 연산을 지원하지 않는다. 본 논문에서는 자바 카드에서 공개키 암호 알고리즘 구현을 위해서 반드시 필요한 연산들을 지원하는 임의의 정수 클래스의 설계 및 구현하였다.

영상 확대를 위한 움직임 적응형 LCD 제어기 설계 (Design of a Motion Adaptive LCD controller for image enlargement)

  • 이승준;권병헌;최명렬
    • 전자공학회논문지SC
    • /
    • 제40권3호
    • /
    • pp.109-116
    • /
    • 2003
  • 본 논문에서는 LCD 패널 제어를 위한 UXGA급 LCD 컨트롤러를 제안하였다. 제안한 컨트롤러는 전화면 디스플레이를 위해 입력 해상도와 출력 해상도 간의 최대 공약수를 이용하여 화면의 확대 기능을 지원하며, 확대 영상의 질을 높이기 위해 입력 영상의 움직임을 3 단계로 구분해서 검출하여 각 단계에 따라 서로 다른 보간 알고리즘을 사용하는 방법을 제안하였다. 제안한 알고리즘의 정량적인 성능 평가를 위해 PSNR을 도입하였으며, 다양한 실험 영상을 이용하여 기존의 알고리즘과 비교 분석을 수행하였다. 그리고 제안한 움직임 검출기의 움직임 검출 성능 평가를 위해 시각적 검증 및 화소 변화 추정을 도입하였다. 제안한 컨트롤러는 VHDL을 이용해 설계되었으며, 기능적 시뮬레이션을 통하여 각각의 세부 블록들의 기능을 검증하고 Xilinx VirtexE FPGA를 이용해 회로 합성을 수행하였다.

소수테이블을 이용한 실용적인 다중 키워드 검색가능 암호시스템 (Practical Conjunctive Searchable Encryption Using Prime Table)

  • 양유진;김상진
    • 정보보호학회논문지
    • /
    • 제24권1호
    • /
    • pp.5-14
    • /
    • 2014
  • 검색가능 암호시스템(searchable encryption system)은 암호화된 자료의 기밀성이 보장된 상태로 원하는 자료의 검색을 가능하게 해주는 기술이다. 클라우드 서비스의 대중화로 데이터 아웃소싱에 대한 관심이 높아지면서 외부 서버의 신뢰 문제를 해결하는 방법으로 최근에 많은 연구가 진행되고 있다. 하지만 대부분의 검색가능 암호시스템에 대한 연구는 하나의 키워드를 이용한 부울 검색만 제안되었고, 다중 키워드 검색에 대한 연구결과는 상대적으로 적을 뿐만 아니라 이 연구들은 대부분 고정 필드 환경을 가정하는 제한적 기법들이다. 이 논문에서는 고정 필드를 사용하지 않으며, 랭킹 정보까지 제공할 수 있는 새로운 다중 키워드 검색가능 암호시스템을 제안한다. 이 시스템은 키워드와 소수를 매핑한 소수테이블과 검색 연산으로 최대공약수 연산을 사용하기 때문에 기존 시스템보다 상대적으로 효율적이며, 복잡한 암호모듈이 필요 없어 비교적 쉽게 구현이 가능하다.

저 면적 타원곡선 암호프로세서를 위한 GF(2$^{m}$ )상의 새로운 산술 연산기 (A New Arithmetic Unit Over GF(2$^{m}$ ) for Low-Area Elliptic Curve Cryptographic Processor)

  • 김창훈;권순학;홍춘표
    • 한국통신학회논문지
    • /
    • 제28권7A호
    • /
    • pp.547-556
    • /
    • 2003
  • 본 논문에서는 저 면적 타원곡선 암호프로세서를 위한 GF(2$^{m}$ )상의 새로운 산술 연산기를 제안한다. 제안된 연산기는 바이너리 확장 최대공약수 알고리즘과 MSB(Most Significant Bit) 우선 곱셈 알고리즘으로부터 하드웨어 공유를 통하여 LFSR(Linear Feed Back Shft Register)구조로 설계되었으며, 나눗셈 및 곱셈 모두를 수행 할 수 있다. 즉 나눗셈 모드에서 2m-1 클락 사이클 지연 후 나눗셈의 결과를 출력하며, 곱셈 모드에서 m 클락 사이클 지연 후 곱셈 결과를 각각 출력한다. 본 논문에서 제안된 연산기를 기존의 나눗셈기들과 비교 분석한 결과 적은 트랜지스터의 사용으로 계산 지연시간을 감소 시켰다. 또한 제안된 연산기는 기약다항식의 선택에 어떠한 제약도 두지 않을 뿐 아니라 매우 규칙적이고 묘듈화 하기 쉽기 때문에 필드 크기 m 에 대하여 높은 확장성 및 유연성을 제공한다 따라서, 본 연구에서 제안된 산술 연산기는 타원곡선 암호프로세서의 나눗셈 및 곱셈 연산기로 사용될 수 있다. 특히 스마트 카드나 무선통신기기와 같은 저 면적을 요구하는 응용들에 매우 적합하다.

나눗셈 알고리즘과 유클리드 알고리즘의 확장에 관한 연구 (A Study on Extension of Division Algorithm and Euclid Algorithm)

  • 김진환;박교식
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제23권1호
    • /
    • pp.17-35
    • /
    • 2013
  • 본 연구에서는 초 중등 수학교사의 전문성을 신장하기 위해, 문장제 상황을 바탕으로, 정수를 대상으로 하는 나눗셈 알고리즘과 유클리드 알고리즘을 분수(유리수)를 대상으로 하는 나눗셈 알고리즘과 유클리드 알고리즘으로의 확장에 대해 다룬다. 분수 나눗셈의 문장제 상황에 나타난 이산적 환경과 연속적 환경 및 등분제와 포함제에 따라 '나눈다'는 개념을 두 유형으로 분류하였다. 하나는 유리수체에서 현대대수학 관점에서 다루어지는 대수적 개념이며, 다른 하나는 몫과 나머지가 동반된 정수 나눗셈 알고리즘을 유리수 나눗셈 알고리즘으로 일반화하는 개념이다. 후자의 개념을 중심으로 학교수학에서 다루어지거나 다룰 수 있는 문제 상황을 제시하며, 분수를 대상으로 하는 나눗셈 알고리즘, 최대공약수와 최소공배수, 유클리드 알고리즘에 관해 논의한다.

  • PDF

유한 필드 GF(2m)상의 비트-패러럴 시스톨릭 나눗셈기 (Bit-Parallel Systolic Divider in Finite Field GF(2m))

  • 김창훈;김종진;안병규;홍춘표
    • 정보처리학회논문지A
    • /
    • 제11A권2호
    • /
    • pp.109-114
    • /
    • 2004
  • 본 논문에서는 유한 필드 GF$(2^m)$상에서 모듈러 나눗셈 A($\chi$)/B($\chi$) mod G($\chi$)을 수행하는 고속의 병렬 시스톨릭 나눗셈기를 제안한다. 제안된 나눗셈기는 이진 최대공약수(GCD) 알고리즘에 기반하며, FPGA 칩을 이용하여 구현 및 검증한다. 본 연구에서 제안된 나눗셈기는 연속적인 입력 데이터에 대해 초기 5m-2 클럭 사이클 지연후, 1 클럭 사이클 비율로 나눗셈 결과를 출력한다. 본 논문에서 제안된 나눗셈기를 기존의 병렬형 시스톨릭 나눗셈기들과 비교했을 때, 훨씬 적은 하드웨어의 사용으로 계산지연 시간을 상당히 감소 시켰다. 또한 제안된 나눗셈기는 기약다항식의 선택에 어떠한 제약도 두지 않을 뿐 아니라 매우 규칙적이고 묘듈화 하기 쉽기 때문에 필드 크기 m에 대하여 높은 확장성 및 유연성을 제공한다. 따라서 제안된 구조는 VLSI 구현에 매우 적합하다.

초등학교 가분성(divisibility) 단원에서 개념적 사고의 알고리즘 효율성 분석 연구 (An analysis of the algorithm efficiency of conceptual thinking in the divisibility unit of elementary school)

  • 최근배
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제58권2호
    • /
    • pp.319-335
    • /
    • 2019
  • 이 논문에서는 초등학교 교과서에서의 가분성(divisibility) 개념을 중심으로, 개념적 사고의 과정을 그대로 Python 언어로 코딩하고 Computational Thinking (이하, CT) 중 하나인 자동화에 따른 계산의 효율성을 고찰하였다. 이로부터 얻을 수 있는 교육적 시사점은 다음과 같다. 수학적인 개념적 사고를 CT의 관점에서 생각해 보고, 또한 역으로 컴퓨터 과학에서 중시하고 있는 CT에서 수학적 개념을 추출해 볼 수 있는 쌍방향의 활동이 수학 중심의 코딩교육에서 필요하다.

유한체 GF(2m)의 응용을 위한 새로운 나눗셈 회로 (New Division Circuit for GF(2m) Applications)

  • 김창훈;이남곤;권순학;홍춘표
    • 정보처리학회논문지A
    • /
    • 제12A권3호
    • /
    • pp.235-242
    • /
    • 2005
  • 본 논문에서는 유한체 $GF(2^m)$의 응용을 위한 새로운 비트-시리얼 나눗셈 회로를 제안한다. 제안된 나눗셈 회로는 수정된 바이너리 최대 공약수 알고리즘에 기반하며, 2m-1 클락 사이클 비율로 나눗셈 결과를 출력한다. 본 연구에서 제안된 회로는 기존의 비트-시리얼 나눗셈 회로에 비해 속도에서 $43\%$, 칩 면적에서 $20\%$의 성능 개선을 보인다. 또한 제안된 회로는 기약다항식의 선택에 있어 어떠한 제약 조건도 두지 않을 뿐 아니라 매우 규칙적이고 모듈화 하기 쉽기 때문에 필드 크기 m에 대해 높은 유연성 및 확장성을 제공한다. 따라서 본 논문에서 제안된 나눗셈 회로는 저면적을 요구하는 $GF(2^m)$의 응용에 매우 적합하다.

n+1 소인수분해 알고리즘 (The n+1 Integer Factorization Algorithm)

  • 최명복;이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.107-112
    • /
    • 2011
  • $n=pq$인 합성수 을 크기가 비슷한 p와 q로 소인수분해하는 것은 매우 어려운 문제이다. 대부분의 소인수분해 알고리즘은 $a^2{\equiv}b^2$ (mod $n$)인 제곱 합동이 되는 ($a,b$)를 소수의 곱 (인자 기준, factor base, B)으로 찾아 $a^2-b^2=(a-b)(a+b)$ 공식에 의거 유클리드의 최대공약수 공식을 적용하여 $p=GCD(a-b,n)$, $q=GCD(a+b,n)$으로 구한다. 여기서 ($a,b$)를 얼마나 빨리 찾는가에 알고리즘들의 차이가 있으며, B를 결정하는 어려움이 있다. 본 논문은 좀 더 효율적인 알고리즘을 제안한다. 제안된 알고리즘에서는 $n+1$을 3자리 소수까지 소인수분해하여 B를 추출하고 B의 조합 $f$를 결정한다. 다음으로, $a=fxy$가 되는 값을 $\sqrt{n}$ < $a$ < $\sqrt{2n}$ 범위에서 구하여 $n-2$의 소인수분해로 $x$를 얻고, $y=\frac{a}{fx}$, $y_1$={1,3,7,9}을 구한다. 제안된 알고리즘을 몇 가지 사례에 적용한 결과 $\sqrt{n}$ < $a$를 순차적으로 찾는 기존의 페르마 알고리즘에 비해 수행 속도를 현격히 단축시키는 효과를 얻었다.