• Title/Summary/Keyword: 최대/최소 하중비

Search Result 46, Processing Time 0.027 seconds

Inelastic Dynamic Analysis of Structure Subjected to Across-Wind Load (풍직각방향 풍하중이 작용하는 구조물의 비탄성 동적 해석)

  • Ju-Won Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • In this study, fluctuating wind velocity for time history analysis is simulated by a single variate, single-dimensional random process using the KBC2022 spectrum about across-wind direction. This study analyzed and obtained the inelastic dynamic response for structures modeled as a single-degree-of-freedom system. It is assumed that the wind response is excellent in the primary mode, the change in vibration owing to plasticization is minor, along-wind vibration and across-wind vibration are independent, and the effect of torsional vibration is small. The numerical results, obtained by the Newmark-𝛽 method, shows the time-history responses and trends of maximum displacements. As a result of analyzing the inelastic dynamic response of the structure with the second stiffness ratio(𝛼) and yield displacement ratio (𝛽) as variables, it is identified that as the yield displacement ratio (𝛽) increases when the second stiffness ratio is constant, the maximum displacement ratio decreases, then reaches a minimum value, and then increases. When the stiffness ratio is greater than 0.5, there is a yield point ratio at which the maximum displacement ratio is less than 1, indicating that the maximum deformation is reduced compared to the elastically designed building even if the inelastic behavior is permitted in the inelastic wind design.

Quantification of R-ratio effect on J-integral under large-amplitude cyclic loading condition (큰 진폭의 반복하중 조건에서 R-ratio에 따른 J-적분 정량화)

  • Nam, Hyun Suk;Kim, Yun Jae;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.34-39
    • /
    • 2016
  • This paper presents a method to quantify R-ratio effect on J-integral under large-amplitude cyclic loading condition. Generally, monotonic tearing resistance curves are used to assess stability of cracked nuclear piping under seismic loading. However, it is well known that fracture toughness decrease at cyclic loading condition, according to R-ratio. For this reason, it is important to quantify the J-R curves under cyclic loading condition. To quantify the R-ratio effect, correction method which was proposed by Tranchand is considered. This method considers crack opening area in order to calculate modified J-integral. This method leads to an increase of fracture toughness. At R=-0.5 case, this method is good agreement with monotonic J-R curves. However, results show that this method has a limit to apply a large R-ratio case.

Case Study on Design Efficiency and Bearing Capacity Characteristics of Bored PHC Piles (PHC 매입말뚝의 설계효율과 지지력 특성 사례분석)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Choi, Yong-Kyu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.45-53
    • /
    • 2019
  • In this study, it was analyzed the cases of bored PHC piles designed for the building foundations. The overall length of the piles varies within a maximum of 35 m. However, the average length was 17.0 to 18.9 m depending on the kind of the bedrock, with no significant difference. The socket length entered into the bedrock was designed with approximately 58% of the whole piles being 1m, the minimum length of the specification, and up to 5m. Although the range in design efficiency was very large, on average it was about 70%, consistent with the usual known extent. Applications with low design efficiency were mainly shown on the foundation of low-rise buildings or rides with low design load. On the weathered rock, the design load, which governs the design result was widely distributed at 65 to 97% of allowable bearing capacity of ground. The ratio of allowable axial load of piles to allowable bearing capacity of ground is also widely distributed between 36 and 115%, so optimization efforts are required along with design efficiency. On the other hand, the allowable bearing capacity on the soft or hard rock was highly equal, mostly within 90% of the allowable axial load of piles. In the design, the end bearing resistance averaged over 75% of the allowable bearing capacity. However, the results of the dynamic pile load test show that the end bearing resistance was predominant under the E.O.I.D conditions, and in some cases, the end bearing resistance was at least 25% under the restrike conditions.

Parallel Nonlinear Analysis of Prestressed Concrete Frame on Cluster System (클러스터 시스템에서 프리스트레스트 콘크리트 프레임의 병렬 비선형해석)

  • 이재석;최규천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.287-298
    • /
    • 2001
  • Analysis of nonlinear behavior of prestressed concrete frame structures on PC is a time-consuming computing job if the problem size increase to a certain degree. Cluster system has emerged as one of promising computing environments due to its good extendibility, portability, and cost-effectiveness, comparing it with high-end work-stations or servers. In this paper, a parallel nonlinear analysis procedure of prestressed concrete frame structure is presented using cluster computing. Cluster system is configured with readily available pentium III class PCs under Win98 or Linux and fast ethernet. Parallel computing algorithms on element-wise processing parts including the calculation of stiffness matrix, element stresses and determination of material states, check of material failure and calculation of unbalanced loads are developed using MPL. Validity of the method is discussed through typical numerical examples. For the case of 4 node system, maximum speedup is 3.15 and 3.74 for Win98 and Linux, respectively. Important issues for the efficient use of cluster computing system based un PCs and ethernet are addressed.

  • PDF

Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio (그라우트 주입율 변화에 따른 사질토의 동적계수 특성)

  • Ahn, Kwangkuk;Park, Junyoung;Oh, Jonggeun;Lee, Jundae;Han, Kihwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • Ground dynamic parameter such as shear elastic modulus and damping ratio is a very important variable in design of ground-structure with repeated load and dynamic load. Shear elastic modulus and damping ratio on small strain below linear limit strain is constant regardless of strain. Shear elastic modulus as the maximum shear elastic modulus and damping ratio as the minimum damping ratio were considered. As a lot of experiment related to the maximum shear elastic modulus, which is in dynamic deformation characteristics, have been conducted, many factors including voiding ratio, over consolidation ratio(OCR), confining pressure, geology time, PI, and the number of load cycle affect to dynamic soil characteristic. However, the research of ground dynamic characteristic improved with grout is absent such as underground continuous wall construction, deep mixing method, umbrella arch method. In order to investigate the dynamic soil characteristics improved with grout, in this study, resonant column tests were performed with changing water content(20%, 25%, 30%) and injection ratio of grout(5%, 10%, 15%), cure time(7th day, 28th day) As a result, shear elastic modulus and damping ratio, which are ground dynamic parameter, are affected by the injection ratio of milk grout, cure time and water content.

Fatigue Behavior of Reinforced Concrete Beams Externally Strengthened using FRP Tendons (FRP 긴장재로 외부 보강된 철근콘크리트 보의 피로거동)

  • Park, Sang Yeol;Hong, Sung Ryong;Kim, Chang Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.809-817
    • /
    • 2008
  • Recently, the external prestressing method is being much frequently used in strengthening reinforced concrete structures because of it's excellent load resistance and serviceability increases comparing to other strengthening methods. However, it is true that the research on fatigue performance of concrete structures strengthened by the external prestressing using FRP tendons is rare. Therefore, the purpose of this study is to evaluate the safety and feasibility of the external prestressing method by analyzing the characteristics of the reinforced concrete beam strengthening using FRP tendons under repeated loads. Test variables adopted in this experimental study are the types of external prestressing material (steel or FRP tendon) and the repeated load ranges. The repeated load range have the minimum 50% of yield load of reinforced concrete beam and the maximum 70-85%. The test beams are loaded by 4 point loadings with 3 Hz sine wave. From this experimental study, it is confirmed that the reinforced concrete beams strengthened using FRP tendons have sufficient safety against fatigue, especially in FRP tendon itself, tendon at deviators and tendon at anchorages.

Evaluation of rock load based on stress transfer effect due to tunnel excavation (굴착으로 인한 응력전이효과를 고려한 터널의 지반이완하중 평가)

  • Lee, Jae-Kook;Kim, Jung-Joo;Rehman, Hafeezur;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.999-1012
    • /
    • 2017
  • Theoretical, empirical and numerical methods are used to evaluate the rock load due to tunnelling. Theoretical and empirical methods do not consider ground conditions, tunnel shape, and construction conditions. However, through numerical analysis, it is possible to analyze the displacement and stresses around tunnel due to its excavation, and evaluate the rock load considering ground and construction conditions. The stress transfer ratio(e) which is defined as a ratio of the difference between the major and minor principal stresses to major principal stress is used in order to understand the stress transfer effect around the tunnel excavation using numerical analysis results. The loosend area around tunnel periphery was found based on this approach. The difference of rock load from stress transfer effect was found according to the ground grade. From comparison, rock load obtained from stress transfer effect (e = 10%) were somewhat larger than the results obtained from the critical strain method, but smaller than those obtained from theoretical and empirical methods. The stress transfer effect approach considers the ground condition, tunnel shape; therefore, it can be applied to evaluate the rock load in concrete lining design.

Structural Performance of Double Rip Decks Reinforced with Inverted Triangular Truss Girders (역삼각 트러스 거더로 보강된 더블 골 데크 성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Chung, Kyung-Soo;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.559-566
    • /
    • 2017
  • This paper proposes a new composite deckplate system reinforced with inverted triangular truss girders(called 'D Deck'), which does not require the use of temporary supports at construction stage. The proposed system retains increased stiffness and strength while keeping the absolute floor height change to a minimum level and can be utilized as floor systems of various types beam members such as the conventional wide-flange and U-shaped composite beams. In order to evaluate the performance of the proposed system, five specimens with a span of 5.5 m were fabricated and tested under field loading conditions consisting of several intermediate steps. The load-deflection curves of each specimen were plotted and compared with the nonlinear three-dimensional finite element analysis results. The comparison showed that the effective load sharing between the truss girders and floor deck occurs and the maximum deflection under construction stage loading is well below the limit estimated by the provisions in Korea Building Code.

Optimization of Active Tendon Controlled Structures by Efficient Solution of LQR Control Gain (LQR 제어이득의 효율적 산정에 의한 능동텐던 구조물의 최적화)

  • Cho, Chang-Geun;Kyun, Jun-Myong;Jung, In-Kju;Park, Moon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.73-80
    • /
    • 2008
  • The objective of current study is to develop an optimization technique for the seismic actively controlled building structures using active tendon devices by an efficient solution of LQR control gain. In order to solve the active control system, the Ricatti closed-loop algorithm has been applied, and the state vector has been formulated by the transfer matrix and solved by a numerical technique of the trapezoidal rule. The time-delay problem has been also considered by phase compensation. To optimize the performance index, the ratio of the weighted matrix is the design variable, allowable story drift limits of IBC 2000 and tendon forces have been applied as restraint conditions, and the optimum control program has been developed with the algorithm of the SUMT technique. In examples of the optimization problem of eight stories shear buildings, it is evaluated that the optimum controlled building is more suitable in the control of earthquake response than the uncontrolled system and can reduce the performance index to compare with the controlled system with a constant ratio of the weighted matrix.

  • PDF

Behavior of Composite Structure by Nonlinearity of Steel-concrete Interface(II) -Behavior of Steel-Concrete Interface- (강·콘크리트 경계면의 비선형성에 따른 합성구조체 거동 (II) -강·콘크리트 경계면의 거동 특성-)

  • Jeong, Youn Ju;Jung, Kwang Hoe;Kim, Byung Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.509-518
    • /
    • 2003
  • In this study, we carried out nonlinear analysis according to various interface nonlinear models by interaction magnitude, and analyzed interface behavior such as distribution of tangential traction and relative slip in steel-concrete composite structure. As a result of this study, tangential traction and relative slip of interface is rapidly increased at the steel plate-concrete interface, especially at the neutral region, rather than tensile, as opposed to the T beam-concrete interface. In transverse direction, it has gradually reduced to go outside from loading position. In longitudinal direction, it was minimum at the central region near the loading point, maximum at 0.6-0.7L from support and gradually reduced as it nears support. Moreover, as the load is increased, the failure of interface gradually expands from the maximum tangential traction position to the entire region. It is expected to provide fundamentality for interface behavior and load-carrying mechanism, and for the design of bending and shear connection of steel-concrete composite structure.