• 제목/요약/키워드: 최근접 이웃 인식기

검색결과 17건 처리시간 0.025초

얼굴인식을 위한 거리척도학습 방법 비교 (A Comparison of Distance Metric Learning Methods for Face Recognition)

  • 밧수리수브다;고재필
    • 한국멀티미디어학회논문지
    • /
    • 제14권6호
    • /
    • pp.711-718
    • /
    • 2011
  • 얼굴인식과 같이 클래스의 수가 변하는 분류 문제에는 학습이 필요하지 않은 k-최근접이웃 분류기가 적합하다. 최근 학습 데이터의 분포를 반영하여 거리 척도를 학습하는 방법은 k 최근접이웃 분류기의 획기적 성능향상을 보고하였다. 거리척도학습 방법은 적용 분야에 따라 성능 개선 정도가 다르다. 본 논문에서는 얼굴인식에 대하여 주요 거리척도학습 방법의 성능을 비교한다. 공개 얼굴 데이터베이스에 대한 실험 결과는 성능 및 계산시간 측면에서 주성분 분석 기반의 마하라노비스 거리척도가 얼굴인식 문제에서는 여전히 좋은 선택이 될 수 있음을 보여준다.

회전기계 고장 진단을 위한 최근접 이웃 분류기의 기각 전략 (Rejection Study of Mearest Meighbor Classifier for Diagnosis of Rotating Machine Fault)

  • 최영일;박광호;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.81-84
    • /
    • 2000
  • Rotating machine is used extensively and plays important roles in the industrial field. Therefore when rotating machine get out of order, it is necessary to know reasons then deal with the troubles immediately. So many studies far diagnosis of rotating machine are being done. However by this time most of study has an interest in gaining a high recognition But without considering error $rate^{(1)(2)(3)}$ , it is not desirable enough to apply h the actual application system. If the manager of system receives the result misjudging the condition of rotating machine and takes measures, we would lose heavily. So in order to play the creditable diagnosis, we must consider error rate. T h ~ t is. it must be able to reject the result of misjudgment. This study uses nearest neighbor classifier for diagnosis of rotating $machine^{(4)(8)}$ And the Smith's rejection $method^{(1)}$ used to recognize handwritten charter is done. Consequently creditable diagnosis of rotating machine is proposed.

  • PDF

회전 기계 고장 진단을 위한 최근접 이웃 분류기의 기각 전략 (Rejection Scheme of Nearest Neighbor Classifier for Diagnosis of Rotating Machine Fault)

  • 최영일;박광호;기창두
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.52-58
    • /
    • 2002
  • The purpose of condition monitoring and fault diagnosis is to detect faults occurring in machinery in order to improve the level of safety in plants and reduce operational and maintenance costs. The recognition performance is important not only to gain a high recognition rate bur a1so to minimize the diagnosis failures error rate by using off effective rejection module. We examined the problem of performance evaluation for the rejection scheme considering the accuracy of individual c1asses in order to increase the recognition performance. We use the Smith's method among the previous studies related to rejection method. Nearest neighbor classifier is used for classifying the machine conditions from the vibration signals. The experiment results for the performance evaluation of rejection show the modified optimum rejection method is superior to others.

특성함수 및 k-최근접이웃 알고리즘을 이용한 국악기 분류 (Classification of Korean Traditional Musical Instruments Using Feature Functions and k-nearest Neighbor Algorithm)

  • 김석호;곽경섭;김재천
    • 한국멀티미디어학회논문지
    • /
    • 제9권3호
    • /
    • pp.279-286
    • /
    • 2006
  • 주파수 분포벡터를 이용한 분류방법을 국악기 분류 및 인식에 적용하였으며 분류에 사용되는 주파수 분포 벡터 중에서 리듬성분을 수치화한 평균피크값을 제안하였다. 대부분의 주파수 처리함수들은 주파수값의 평균, 통계적특성에 기반을 두고 있으며 국악기자동분류를 위해 신호의 평균, 분산, 영교차율, 균형주파수, 평균 피크값을 이용하여 실험하였다. 국악의 장르 구분을 위한 선행 연구로서 음악신호를 함수처리하고 k-최근접이웃 분류알고리즘을 적용하여 분류하였다. 기존의 주파수 분포벡터를 이용하여 발표되었던 서양음악의 분류 성공률 87%보다 향상된 94.44%의 성공률을 나타냈다.

  • PDF

구조적응 자기구성 지도를 이용한 인간 행동의 성별 분류 (Gender Classification of Human Behaviors Using Structure Adaptive Self-organizing Map)

  • 류중원;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.298-300
    • /
    • 2001
  • 본 논문에서는 구조적응 자기구성 지도 모델을 사용하여 인간 행동의 성별을 분류하는 인식기를 제안하였다. 26명의 사람이 '화난 상태' 혹은 '보통 상태'의 두가지 정서 하에서 '문 두드리기', '손 흔들기', '물건 들어올리기'의 세가지 동작을 수행하는 동안, 행위자 관절점의 속도나 위치 정보로부터 성별을 분류하였다. 또한 SASOM의 성능 비교 분석을 위하여 전통적인 SOM, 다층 퍼셉트론과 거의 두 가지 결합 모델, SASOM와 의사결정트리 결합 모델, 단일 의사 결정트리, $textsc{k}$-최근접 이웃 등의 인식기를 구현하여 성능을 비교분석 하였다. 실험 결과 SASOM 분류기가 가장 높은 이식률을 보였으며 분류기로서 유용함을 알 수 있었다.

  • PDF

감시카메라 시스템에서 PCA에 의한 보간법과 거리별 얼굴인식률 분석 (The Analysis of Face Recognition Rate according to Distance and Interpolation using PCA in Surveillance System)

  • 문해민;곽근창;반성범
    • 정보보호학회논문지
    • /
    • 제21권6호
    • /
    • pp.153-160
    • /
    • 2011
  • 최근 테러와 범죄의 증가로 CCTV와 같은 영상 감시시스템의 도입이 활발하게 이루어지고 있다. 동시에 감시카메라를 활용한 원거리 얼굴인식에 대한 관심도 증가하고 있다. 본 논문에서는 주성분 분석기반 얼굴인식기와 보간법을 이용해 거리별 얼굴인식률의 변화를 분석해보았다. 실험에 사용된 보간법은 최근접 이웃, 양선형, 양3차회선, Lanczos3 보간법이다. 실험결과 기존의 보간법 기술이 주성분 분석기반 원거리 얼굴인식기의 인식률에 미치는 영향은 적은 반면에, 거리별 얼굴영상을 학습영상에 포함시키면 주성분 분석기반 얼굴인식기의 인식률을 향상시킴을 확인하였다.

신경망 분류기를 이용한 암 관련 유전자 발현정보를 분류 (Classification of Cancer-related Gene Expression Data Using Neural Network Classifiers)

  • 권영준;류중원;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.295-297
    • /
    • 2001
  • 최근 생물 유전자 정보를 효과적으로 분석하기 위한 적절한 도구의 필요성이 대두되고 있다. 본 논문에서는 백혈병 환자의 골수로부터 얻어낸 DNA Microarray 유전 정보를 분류하여 환자가 가지고 있는 암의 종류를 예측하기 위한 최적의 특징추출방법과 분류 방법을 찾고자 한다. 이를 위해 피어슨 상관관계, 유클리디안 거리, 코사인 계수, 스피어맨 상관관계, 정보 이득, 상호 정보, 신호 대잡음비의 7가지 특징 추출 방법을 사용하였으며, 역전과 신경망, 의사결정 트리, 구조 적응형 자기구성 지도, $textsc{k}$-최근접 이웃 등 가지의 기계학습 분류기를 이용하여 분류 실험을 하였다. 실험결과, 피어슨 상관관계와 역전파 신경망을 이용한 분류 방법이 97.1%의 인식률을 보임을 알 수 있었다.

  • PDF

MDC와 kNNC를 이용한 고속 자동변조인식 (Fast Automatic Modulation Classification by MDC and kNNC)

  • 박철순;양종원;나선필;장원
    • 한국군사과학기술학회지
    • /
    • 제10권4호
    • /
    • pp.88-96
    • /
    • 2007
  • This paper discusses the fast modulation classifiers capable of classifying both analog and digital modulation signals in wireless communications applications. A total of 7 statistical signal features are extracted and used to classify 9 modulated signals. In this paper, we investigate the performance of the two types of fast modulation classifiers (i.e. 2 nearest neighbor classifiers and 2 minimum distance classifiers) and compare the performance of these classifiers with that of the state of the art for the existing classification methods such as SVM Classifier. Computer simulations indicate good performance on an AWGN channel, even at low signal-to-noise ratios, in case of minimum distance classifiers (MDC for short) and k nearest neighbor classifiers (kNNC for short). Besides a good performance, these type classifiers are considered as ideal candidate to adapt real-time software radio because of their fast modulation classification capability.

특징 추출 알고리즘과 Adaboost를 이용한 이진분류기 (Binary classification by the combination of Adaboost and feature extraction methods)

  • 함승록;곽노준
    • 전자공학회논문지CI
    • /
    • 제49권4호
    • /
    • pp.42-53
    • /
    • 2012
  • 패턴 인식과 기계 학습 분야에서 분류는 가장 기본적으로 해결해야 하는 문제의 유형이다. Adaboost 알고리즘은 Boosting 알고리즘의 아이디어를 실제 데이터분석에 이용할 수 있도록 개량한 방법으로써, 단계를 반복하여 나온 여러 개의 약한 분류기와 가중치 값들의 조합으로 강한 분류기를 생성하는 두 개의 클래스를 분류하는 분류기이다. 주성분 분석법과 선형 판별 분석법은 높은 차원의 특징 벡터를 낮은 차원의 특징 벡터로 축소하는 특징 벡터의 차원 감소와 데이터의 특징 추출에도 유용하게 사용되는 방법들이다. 본 논문에서는, 주성분 분석법과 선형 판별 분석법을 이용하여 추출한 특징을 Adaboost 알고리즘의 약 분류기로 사용함으로써, 특징 추출과 분류를 동시에 하고, 인식률을 높이는 효율적인 Boosted-PCA와 Boosted-LDA 알고리즘을 제안한다. 마지막 장에서는, 제안하는 알고리즘으로 UCI Data-Set 중 2 Class-Data와 FRGC Data의 남자와 여자 영상에 대해서 분류 실험을 진행하였다. 실험의 결과로 제안한 Boosted-PCA와 Boosted-LDA 알고리즘이 기존의 특징 추출 알고리즘과 최근접 이웃 분류기, SVM을 이용한 분류기 방법과 비교하여 인식률이 향상됨을 보인다.

영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구 (A Study on the Measurement of Respiratory Rate Using Image Alignment and Statistical Pattern Classification)

  • 문수진;이의철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권10호
    • /
    • pp.63-70
    • /
    • 2018
  • 영상을 이용한 생체 신호 측정 기술이 발전하고 있으며, 특히 생명 유지를 위한 호흡 신호 측정기술 연구가 지속적으로 진행되고 있다. 기존 기술은 사람의 몸에서 방출하는 열을 측정하는 열화상 카메라를 통하여 호흡 신호를 측정하였다. 또한, 실시간으로 사람의 흉부 움직임을 분석하여 호흡률을 측정하는 연구도 진행되었다. 하지만, 적외선 열화상 영상을 이용하여 영상 처리를 하는 것은 외부 환경 요인으로 인해 호흡 기관의 탐색이 어려울 수 있으며, 이에 따라 호흡률 측정의 정확도가 떨어지는 문제들이 발생했다. 본 연구에서는 호흡 기관의 영역 탐색을 강화하기 위해 가시광 및 적외선 열화상 카메라를 이용하여 영상을 취득하였다. 그리고 두 영상을 기반으로 얼굴 인식, 영상 정합 등의 과정을 통해 호흡 기관 영역의 특징을 추출한다. 추출한 특징 값을 통계학적 분류 방법 중 하나인 k-최근접 이웃 분류기를 통해 호흡 신호의 패턴을 분류한다. 분류한 패턴의 특성에 따라 호흡률을 계산하며, 측정한 호흡률의 성능을 확인하기 위해 실제 호흡률과 비교 과정을 통해 분석함으로써, 호흡률 측정의 가능성을 확인하였다.