• Title/Summary/Keyword: 촬영장치

Search Result 700, Processing Time 0.038 seconds

Analysis of NWP GRIB Data for LEO Satellite Mission Planning (저궤도 관측위성 임무계획(Mission Planning)을 위한 기상수치예보 GRIB Data 분석)

  • Seo Jeong-Soo;Seo Seok-Bae;Bae Hee-Jin;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.178-186
    • /
    • 2006
  • 기상 수치예보는 (Numerical Weather Pridiction, NWP)는 바람, 기온, 등과 같은 기상요소의 시간 변화를 나타내는 물리방정식을 컴퓨터로 풀어 미래의 대기 상태를 예상하는 과학적인 방법으로 지구를 상세한 격자 2진부호(GRIdded Binary, 이하 GRIB)로 나누어 그 격자점에서의 값으로 대기 상태를 나타낸다. 지구 각지에서의 각종 관측자료를 기초로 격자점상의 현재값을 구한다. 대용량의 격자데이터는 이진형태이어서 컴퓨터, 서버 저장장치에서 동일형태 데이터로 존재한다. 우리나라 최초의 저궤도 관측 위성인 다목적 실용위성 KOMPSAT-1호(이하, 아리랑 위성1호)는 전자광학카메라(Electro Optical Camera, EOC)를 탑재하여 1999년 12월 21일에 발사된 이후 2006년 1월 현재까지 6여년간 성공적으로 임무를 수행, 7049여회의 영상을 획득하여 국가적으로 귀중한 자료로 활용하고 있다. 아리랑 위성1호는 일일 2-3회 EOC영상을 획득하고 있으며, 임무계획(Mission Planning)은 MP(Mission Planner)가 사용자로부터 자료를 수집하여 임무분석 및 계획 서브시스템(MAPS)에 의해 계산되어진 위성의 제도예측 데이터에 촬영하고자하는 목표지점 좌표를 입력하여 자동명령생성기(KSCG)에 의해 계산된 촬영 경사각도(Tilt)값을 위성에 전송하여 목표지역의 영상을 획득하게 된다. 위성영상 획득에 있어 고가의 위성을 운영하면서 기상의 상태를 정확히 예측하여 실패없이 유효한 영상을 획득하는 것이 무엇보다 중요하다. 본 논문에서는 효율적인 위성임무계획을 위한 기상수치예보 자료를 분석하여 앞으로 발사하게 될 고해상 카메라 탑제위성인 아리랑 위성2호와 3호에 적용하고자 한다. the sufficient excess reactivity to override this poisoning must be inserted, or its concentration is decreased sufficiently when its temporary shutdown is required. As ratter of fact, these have an important influence not only on reactor safety but also on economic aspect in operation. Considering these points in this study, the shutdown process was cptimized using the Pontryagin's maximum principle so that the shutdown mirth[d was improved as to restart the reactor to its fulpower at any time, but the xenon concentration did not excess the constrained allowable value during and after shutdown, at the same time all the control actions were completed within minimum time from beginning of the shutdown.및 12.36%, $101{\sim}200$일의 경우 12.78% 및 12.44%, 201일 이상의 경우 13.17% 및 11.30%로 201일 이상의 유기의 경우에만 대조구와 삭제 구간에 유의적인(p<0.05) 차이를 나타내었다.는 담수(淡水)에서 10%o의 해수(海水)

  • PDF

A Test of a Far Infrared Camera for Development of New Surface Image Velocimeter for Day and Night Measurement (주야간 겸용 표면영상유속계 개발을 위한 원적외선 카메라의 적용성 검토)

  • Yu, Kwonkyu;Kim, Seojun;Yoo, Byeongnam;Bae, Inhyuk
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.659-672
    • /
    • 2015
  • In flow velocity measurement of natural rivers, taking images with proper image quality is the fundamental and the most important step. Since flood peaks generally occur in night time, it is very difficult to capture proper images in that time. The present study aims to test a far infra-red camera as a adequate alternative to resolve the various problems in measuring flood discharges. The far infra-red cameras are able to capture images in night time without help of any extra illuminations. Futhermore they are not affected by fog nor smoke, hence they can be adapted for a fixed-type surface image velocimeters. For comparison, a commercial camcorder and a near infra-red cameras were used together. The test images were taken at a day time and a night time, and the image acquisition work were performed at an artificial flow channel of the Andong River Experiment Station. The analyzed results showed that the far infra-red camera would be a good instrument for surface image velocimeters, since they were able to capture regardless light condition. There are, however, a few minor problems in their accuracy of the analyzed results. About their accuracy a more study would be required.

Development of Image Reconstruction Algorithm for Chest Digital Tomosynthesis System (CDT) and Evaluation of Dose and Image Quality (흉부 디지털 단층영상합성 시스템의 영상 재구성 알고리즘 개발 및 선량과 화질 평가)

  • Kim, Min Kyoung;Kwak, Hyeng Ju;Kim, Jong Hun;Choe, Won-Ho;Ha, Yun Kyung;Lee, So Jung;Kim, Dae Ho;Lee, Yong-Gu;Lee, Youngjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.143-147
    • /
    • 2016
  • Recently, digital tomosynthesis system (DTS) has been developed to reduce overlap using conventional X-ray and to overcome high patient dose problem using computed tomography (CT). The purpose of this study was to develop image reconstruction algorithm and to evaluate image characteristics and dose with chest digital tomosynthesis (CDT) system. Image reconstruction was used for filtered back-projection (FBP) methods and system geometry was constructed ${\pm}10^{\circ}$, ${\pm}15^{\circ}$, ${\pm}20^{\circ}$, and ${\pm}30^{\circ}$ angular range for acquiring phantom images. Image characteristics carried out root mean square error (RMSE) and signal difference-to-noise ratio (SDNR), and dose is evaluated effective dose with ${\pm}20^{\circ}$ angular range. According to the results, the phantom image with slice thickness filter has superb RMSE and SDNR, and effective dose was 0.166 mSv. In conclusion, we demonstrated usefulness of developed CDT image reconstruction algorithm and we constructed CDT basic output data with measuring effective dose.

Development of portable digital radiography system with device for sensing X-ray source-detector angle and its application in chest imaging (엑스선촬영 각도를 측정할 수 있는 장치 개발과 흉부 X선 영상촬영에서의 적용)

  • Kim, Tae-Hoon;Heo, Dong-Woon;Ryu, Jong-Hyun;Jeong, Chang-Won;Jun, Hong Young;Kim, Kyu Gyeom;Hong, Jee Min;Jang, Mi Yeon;Kim, Dae Won;Yoon, Kwon-Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.235-238
    • /
    • 2017
  • This study was to develop a portable digital radiography (PDR) system with a function measuring the X-ray source-with-detector angle (SDA) and to evaluate the imaging performance for the diagnosis of chest imaging. The SDA device consisted of an Arduino, an accelerometer and gyro sensor, and a Bluetooth module. According to different angle degrees, five anatomical landmarks on chest images were assessed using a 5-point scale. Mean signal-to-noise ratio and contrast-to-noise ratio were 182.47 and 141.43. Spatial resolution (10% MTF) and entrance surface dose were 3.17 lp/mm ($157{\mu}m$) and 0.266mGy. The angle values of SDA device were not significant difference as compared to those of the digital angle meter. In chest imaging, SNR and CNR values were not significantly different according to different angle degrees (repeated-measures ANOVA, p>0.05). The visibility scores of the border of heart, 5th rib and scapula showed significant differences according to different angles (rmANOVA, p<0.05), whereas the scores of the clavicle and 1st rib were not significant. It is noticeable that the increase in SDA degree was consistent with the increase of visibility score. Our PDR with SDA device would be useful to be applicable to clinical radiography setting according to the standard radiography guideline at various fields.

  • PDF

Design and Implementation Stereo Camera based Twin Camera Module System (스테레오 카메라 기반 트윈 카메라 모듈 시스템 설계 및 구현)

  • Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.537-546
    • /
    • 2019
  • The paper actualizes the twin camera module system that is portable and very useful for the production of 3D contents. The suggested twin camera module system is a system to be able to display the 3D image after converting the inputted image from 2D stereo camera. To evaluate the performance of the twin camera module suggested in this paper, I assessed the correction of Rotation and Tilt created depending on the visual difference between the left and right stereoscopic image shot by the left and right lenses by using the Test Platform. In addition, I verified the efficiency of the twin camera module system through verifying Depth Error of 3D stereoscopic image by means of Scale Invariant Feature Transform(SIFT) algorithm. I think that if the user utilizes the suggested twin camera module system in displaying the image to the external after converting the shot image into the 3D stereoscopic image and the preparation image, it is possible to display the image in a matched way with an output device fit respectively for different 3D image production methods and if the user utilizes the system in displaying the created image in the form of the 3D stereoscopic image and the preparation image via different channels, it is possible to produce 3D image contents easily and conveniently with applying to lots of products.

A Study on Change of Plantar Fascia Thickness in Chronic Stroke Patient Based on Spasticity (만성 뇌졸중 환자에서 경직에 따른 족저근막의 두께 변화에 관한 연구)

  • Kim, Tae-Gon;Sim, Ki-Cheol;Kim, Kyung-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5723-5729
    • /
    • 2013
  • The purpose of this study was to investigate the imbalance of muscle tone and frequent exposure to excessive gait training in patients with chronic spasticity due to stroke, the thickness of the plantar fascia to change and to evaluate. The subjects of this study was in 54 patients with chronic stroke from 18 patients Group I(MAS G0), 18 patients Group II(MAS G1), and 18 patients Group III(MAS G2) were selected. Measurement of clinical symptoms and physical examination, MAS(Modified Ashworth Scale), ultrasonographic, ROM(Range of Motion), VAS(Visual Analogue Scale), TUG(Timed Up and Go test) was measured. The study results were each group between the unaffected side and the affected side on plantar fascia thickness was statistically significantly thicker(p<.001). Each group between the unaffected side and the affected side on ankle dorsiflexion ROM was statistically significantly decrease(p<.001), VAS(p<.001), TUG(p<.001) statistically significantly increase(p<.001). In this study, the plantar fascia pathokinesiology ever presented by the contents of gait training in stroke patients is one of the information that you need to consider when presented.

Estimation of Computed Tomography Dose in Various Phantom Shapes and Compositions (다양한 팬텀 모양 및 재질에 따른 전산화단층촬영장치 선량 평가)

  • Lee, Chang-Lae
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The $CTDI_{100center}$ values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but $CTDI_{100center}$ values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom $CTDI_{100center}$ values were relatively low as the material density increased. However, in the case of Polyethylene, the $CTDI_{100center}$ value was higher than that of PMMA at diameters exceeding 15 cm ($CTDI_{100center}$ : 35.0 mGy). And a diameter greater than 30 cm ($CTDI_{100center}$ : 17.7 mGy) showed more $CTDI_{100center}$ than Water. We have used limited phantoms to evaluate CT doses. In this study, $CTDI_{100center}$ values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

Effects of Wind Depending on Tracers in an Application of LSPIV (LSPIV 적용시 Tracers에 따른 바람의 영향)

  • Kim, Young-Sung;Yang, Jae-Rheen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.836-840
    • /
    • 2007
  • Large-Scale Particle Image Velocimetry (LSPIV)는 Particle Image Velocimetry (PIV)를 자연하천이나 실험실에서 넓은 영역($4m^2{\sim}45,000m^2$)에 적용할 수 있도록 확장시킨 것으로 지난 10여년 이상 세계적으로 널리 이에 대한 연구가 진행되고 있다. PIV는 seeding, illumination, recording 그리고 image processing으로 구성된다. LSPIV(Large Scale PIV)는 PIV의 기본원리를 근거로 하여 기존의 PIV에 비하여 실험실 내에서의 수리모형실험이나 일반 하천에서의 유속측정과 같은 큰 규모의 흐름해석을 할 수 있도록 seeding, illumination에 대한 조정이 필요하고, 촬영된 image에 대한 왜곡을 없애는 작업이 필요하다. LSPIV는 PIV의 네가지 단계를 포함하여 seeding, illumination, recording, image transformation, image processing 및 post-processing의 여섯 단계로 구성되어진다 (Li, 2002). LSPIV를 일반 하천에 적용시, 자연발생적인 tracers - 난류로 인한 표면 교란, 부유물, 수공구조물로 인해서 발생하는 자연 발생되는 거품 - 가 풍부해서 seeding이 불필요한 경우를 제외하고는 정확한 유속장의 해석을 위하여 인공적인 seeding을 필요로 한다. 일반적으로 Seeding 재료로 많이 이용되는 것은 wood mulch, Ecofoam, grain-straw 등이다. 하천에서 자연발생적 혹은 인위적 seeding을 하였을 때 이들 tracers의 물리적인 속성으로 바람에 쉽게 영향을 받고 이로 인하여 실제의 물표면유속을 대표하지 못하는 경우가 있다. 이에 실험실의 개수로에서 여러 가지 이용 가능한 tracers에 대하여 바람에 의한 오차 발생의 정도를 조사하였다. 실험에 사용된 seeding 재료로는 black polypropylene, Ecofoam, white polystyrene의 세가지를 이용하였다. black polypropylene (SG=0.92)과 white polystyrene (SG=0.0125)은 폭 1 m 이내의 개수로 실험 장치에서 유속장의 해석에 많이 이용되고 Ecofoam (SG=0.0065)은 수리 모형실험에서 많이 이용된다. seeding 물질에 따른 바람의 영향을 분석하기 위해서 폭 60cm의 개수로에서 seeding 물질을 변경하면서 펌프의 조작에 의해 3가지 단면평균유속을 발생시키고, 각 평균유속조건에 대해 4가지의 바람세기 - 바람이 없을 때와 팬의 바람세기를 1단, 2단, 3단으로 조정 - 를 발생시켰으며, 개수로위에서 촬영한 이미지의 상류측기준점으로부터 0.3556m 하류 지점을 횡단하는 단면의 표면유속을 측정하여 비교하였고, 그 단면의 중앙에서 물표면 바로 위 지점의 풍속을 측정하였다. 각 Seeding 물질에 대해 팬을 켜지 않았을 때, 즉 바람의 영향이 없을 때 측정한 표면유속을 바람의 세기가 변한 경우의 기준 표면유속으로 이용하였다. 본 연구의 결과 비중이 0.01 내외인 Ecofoam과 white polystyrene에 비해 비중이 0.92인 black polypropylene은 대부분이 물속에 잠겨 있어 흐름과 거의 일치하여 움직임을 알 수 있었다. 또한 흐름의 평균유속이 0.165 m/s의 저유속에서 바람이 tracers에 미치는 영향이 평균유속 0.558m/s인 경우보다 커서, 바람의 세기의 증가에 따라 표면유속 측정값이 급속히 감소되었다. 흐름의 평균유속이 큰 경우에는 바람이 tracer에 마치는 영향이 현격히 줄어듬을 보이고 있다. 결론적으로 유속이 증가함에 따라 바람의 영향은 감소하나, 바람의 영향을 최소화시키기 위해서는 가급적 비중이 큰 물질(0.5

  • PDF

Identification of Factors Affecting Errors of Velocity Calculation on Application of MLSPIV and Analysys of its Errors through Labortory Experiment (MLSPIV를 이용한 유속산정시 오차요인 규명 및 실내실험을 통한 유속산정오차 분석)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Large-Scale Particle Image Velocimetry (LSPIV) is an extension of particle image velocimetry (PIV) for measurement of flows spanning large areas in laboratory or field conditions. LSPIV is composed of six elements - seeding, illumination, recording, image transformation, image processing, postprocessing - based on PIV. Possible error elements at each step of Mobile LSPIV (MLSPIV), which is a mobile version of LSPIV, in field applications are identified and summarized the effect of the errors which were quantified in the previous studies. The total number of elemental errors is 27, and five error sources were evaluated previously, seven elemental errors are not effective to the current MLSPIV system. Among 15 elemental errors, four errors - sampling time, image resolution, tracer, and wind - are investigated through an experiment at a laboratory to figure out how those errors affect to velocity calculation. The analysis to figure out the effect of the number of images used for image processing on the velocity calculation error shows that if over 50 images or more are used, the error due to it goes below 1 %. The effect of the image resolution on velocity calculation was investigated through various image resolution using digital camera. Low resolution image set made 3 % of velocity calculation error comparing with high resolution image set as a reference. For the effect of tracers and wind, the wind effect on tracer is decreasing remarkably with increasing the flume bulk velocity. To minimize the velocity evaluation error due to wind, tracers with high specific gravity is favorable.

Effect of head positioning on the vertical and horizontal magnification in panoramic radiographs: rotation along the sagittal and transverse plane (파노라마방사선사진에서 환자의 머리 위치가 하악 수직, 수평 확대율에 미치는 영향: 상하 및 좌우회전)

  • Kim, Yong-Gun;Byun, Jin-Seok;An, Seo-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the effect of head position changes on vertical and horizontal magnification in dental panoramic radiographs. Materials and Methods: Five 4 mm metal balls were placed above alveolar crest of dry skull considering extraction socket and dental arch. Panoramic radiographs were taken by OP-100D (Instrumentarium Imaging Co., Tuusula, Finland) at proper and rotated head position along the sagittal and transverse axis at 3 - $20^{\circ}$ upwardly, downwardly, to the left and to the right rotation. Images were stored in DICOM files and were measured by ruler equipped within INFINITT PACS software. Results: The mean horizontal magnification was $1.22{\pm}0.01-1.44{\pm}0.01$ and mean vertical magnification was $1.29{\pm}0.00-1.35{\pm}0.02$ at standard head position. There was statistical significance of horizontal magnification between the anterior ($1.24{\pm}0.02-1.31{\pm}0.03$) and the posterior area ($1.40{\pm}0.03-1.33{\pm}0.02$) (P < 0.05). Vertical magnification resulted in less variation ($1.24{\pm}0.01-1.37{\pm}0.02$) than horizontal magnification ($0.88{\pm}0.03-3.73{\pm}0.16$) according to the rotation. There was statistical significant difference on horizontal magnification (P < 0.05). Conclusion: In rotated head position, the horizontal magnification should be considered because these can cause distortion on panoramic radiographs.