Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.362-365
/
2011
단위면적당 증발산량 중 일부가 식생의 물질 생산에 이용될 수 있는지를 나타내는 지표인 수분 이용효율 (Water Use Efficiency, WUE)은 총 일차생산성(Gross Primary Productivity, GPP)과 단위면적당 증발산량(Evapotranspiration, ET)의 비로 산출된다. 이전 연구들에서의 수분 이용효율의 적용은 수분 스트레스에 대한 작물의 생산성 차이 분석과 같은 작물학과 농림학 분야의 연구들이 대부분이었지만. 기후 변화가 생태계 생산성 또는 에너지 수지에 영향을 미치는 등의 전 지구적 규모의 수문학적 연구에도 적용할 수 있다. 본 연구에서는, Moderate Resolution Imaging Spectroradiometer (MODIS) 영상자료에서 1km 해상도로 8일 단위의 총 일차생산성과 증발산량을 산정함으로써 수분 이용효율을 구하였다. 향후에는 산정된 이 지표를 남한지역에 적용하여 수분 이용효율에 대한 지도를 작성하고, 실측된 총 일차생산량과 증발산 값을 이용하여 검증한 후 알고리즘을 개선해 나갈 계획이다.
Park, Jongmin;Lee, Dalgeun;Park, Jinyi;Choi, Minha
Journal of Korea Water Resources Association
/
v.54
no.10
/
pp.779-793
/
2021
Water stress and environmental drivers are important factors to explain the variance of gross primary production (GPP). Environmental drivers are used to generate GPP in Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm and process-based model. However, MODIS algorithm only consider the vapor pressure deficit (VPD) data while the process-based biogeochemical model also uses limited data to express water stress. We compared the relationship between environmental drivers and GPP from eddy covariance method, MODIS algorithm, and Community Land Model 4 (CLM 4) simulation in normal years and drought years. To consider water stress specifically, we used VPD and evaporative fraction (EF). We evaluated the effects from environmental drivers and EF towards GPP products using the structural equation modeling (SEM) in South Korea. We found that GPP products from MODIS algorithm and model simulation results were not restricted from VPD data if VPD was underestimated. We also found that in the cropland area, irrigation effects can relieve VPD effects to GPP. However, GPP products derived from MODIS and CLM 4 had limitation to explain the irrigation effects to GPP. Overall, these results will enhance the understanding of GPP products derived from MODIS and CLM 4.
Park, Yoonkyung;Cho, Seonju;Choi, Daegyu;Kim, Sangdan
Journal of Wetlands Research
/
v.14
no.4
/
pp.503-518
/
2012
Models estimating carbon budget at land surface are mainly interested in vertical flux of carbon. On the other hand, studies on horizontal flux are obviously lacked to confirm that relationship between the hydrological flux of organic carbon discharged from catchment and terrestrial carbon production, a relation between Total Organic Carbon(TOC) and Gross Primary Production(GPP) tried analysis through cross correlation. The best correlation structure is correlation between GPP and TOC of flow-weighted mean concentration from watershed without delay. Furthermore, cross correlation analysis was performed by consider periodicity. The correlation between TOC and GPP in summer was similar to correlation without periodicity. Therefore, correlation between GPP and TOC was most regulated by the correlation between GPP and TOC at summer. As a result, the vegetation carbon and organic carbon from watershed is recognized a close relationship on the seasonal. Therefore, future research is correlation analyzing between vegetation variables according season, GPP and TOC, we are expected to use quantitative understanding that horizontal flux flow of carbon from the surface.
Jeemi Sung;Jongjin Baik;Hyeon-Joon Kim;Changhyun Jun
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.203-203
/
2023
총일차생산량(GPP, Gross Primary Productivity)은 생태계의 유기물 생산량을 나타내는 지표로써 생태계 생산성과 안정성을 파악할 수 있는 중요한 지표로 알려져 있다. GPP를 산출하는 대표적인 방법에는 다중 센서를 탑재한 원격 탐사 자료를 활용하는 방법과 플럭스타워를 통해 관측한 에디공분산을 분석하는 방법이 있다. 본 연구에서는 Landsat과 MODIS와 같이 시공간 해상도가 다른 원격 탐사 자료들을 기반으로 초고해상도 GPP 자료를 산출하기 위한 공간자료 융합 연구를 수행하였다. 이를 위해 GAN(Generative Adversarial Networks)과 같은 머신러닝 알고리즘을 활용하였으며 최종적으로 산정된 GPP 정보는 설마천과 청미천 등에 설치된 플럭스타워로부터 획득한 자료와의 비교·검증을 통해 평가되었다. 본 연구의 성과는 향후 증발산 자료, 생태계 호흡량 자료 등과의 조합을 통해 얻을 수 있는 물이용효율(WUE, Water Use Efficiency), 탄소이용효율(CUE, Carbon Uptake Efficiency)과 같은 지표 산정 시 적극 활용될 수 있을 것으로 기대된다.
Korean Journal of Agricultural and Forest Meteorology
/
v.21
no.1
/
pp.29-41
/
2019
Terrestrial Gross Primary Production (GPP) is the largest global carbon flux, and forest ecosystems are important because of the ability to store much more significant amounts of carbon than other terrestrial ecosystems. There have been several attempts to estimate GPP using mechanism-based models. However, mechanism-based models including biological, chemical, and physical processes are limited due to a lack of flexibility in predicting non-stationary ecological processes, which are caused by a local and global change. Instead mechanism-free methods are strongly recommended to estimate nonlinear dynamics that occur in nature like GPP. Therefore, we used the mechanism-free machine learning techniques to estimate the daily GPP. In this study, support vector machine (SVM), random forest (RF) and artificial neural network (ANN) were used and compared with the traditional multiple linear regression model (LM). MODIS products and meteorological parameters from eddy covariance data were employed to train the machine learning and LM models from 2006 to 2013. GPP prediction models were compared with daily GPP from eddy covariance measurement in a deciduous forest in South Korea in 2014 and 2015. Statistical analysis including correlation coefficient (R), root mean square error (RMSE) and mean squared error (MSE) were used to evaluate the performance of models. In general, the models from machine-learning algorithms (R = 0.85 - 0.93, MSE = 1.00 - 2.05, p < 0.001) showed better performance than linear regression model (R = 0.82 - 0.92, MSE = 1.24 - 2.45, p < 0.001). These results provide insight into high predictability and the possibility of expansion through the use of the mechanism-free machine-learning models and remote sensing for predicting non-stationary ecological processes such as seasonal GPP.
MODIS (Moderate Resolution Image Spectrometer) is a core satellite sensor boarded on Terra and Aqua satellite of NASA Earth Observing System since 1999 and 2001, respectively. MODIS LAI, FPAR, and GPP provide useful means to monitor plant phonology and material cycles in terrestrial ecosystems. In this study, LAI, FPAR, and GPP in Korea were evaluated and errors associated with cloud contamination on MODIS pixels were eliminated for years $2001\sim2003$. Three-year means of cloud-corrected annual GPP were 1836, 1369, and 1460g C $m^{-2}y^{-1}$ for evergreen needleleaf forest, deciduous broadleaf forest, and mixed forest, respectively. The cloud-originated errors were 8.5%, 13.1%, and 8.4% for FPAR, LAI, and GPP, respectively. Summertime errors from June to September explained by 78% of the annual accumulative errors in GPP. This study indicates that cloud-originated errors should be mitigated for practical use of MODIS vegetation products to monitor seasonal and annual changes in plant phonology and vegetation production in Korea.
Investigation of the $CO_2$ exchange between biosphere and atmosphere at regional, continental, and global scales can be directed to combining remote sensing with carbon cycle process to estimate vegetation productivity. NASA Earth Observing System (EOS) currently produces a regular global estimate of gross primary productivity (GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1 km spatial resolution. While the MODIS GPP algorithm uses meteorological data provided by the NASA Data Assimilation Office (DAO), the sub-pixel heterogeneity or complex terrain are generally reflected due to coarse spatial resolutions of the DAO data (a resolution of $1{\circ}\;{\times}\;1.25{\circ}$). In this study, we estimated inputs retrieved from MODIS products of the AQUA and TERRA satellites with 5 km spatial resolution for the purpose of finer GPP and/or NPP determinations. The derivatives included temperature, VPD, and solar radiation. Seven AmeriFlux data located in the Corn Belt region were obtained to use for evaluation of the input data from MODIS. MODIS-derived air temperature values showed a good agreement with ground-based observations. The mean error (ME) and coefficient of correlation (R) ranged from $-0.9^{\circ}C$ to $+5.2^{\circ}C$ and from 0.83 to 0.98, respectively. VPD somewhat coarsely agreed with tower observations (ME = -183.8 Pa ~ +382.1 Pa; R = 0.51 ~ 0.92). While MODIS-derived shortwave radiation showed a good correlation with observations, it was slightly overestimated (ME = -0.4 MJ $day^{-1}$ ~ +7.9 MJ $day^{-1}$; R = 0.67 ~ 0.97). Our results indicate that the use of inputs derived MODIS atmosphere and land products can provide a useful tool for estimating crop GPP.
Korean Journal of Agricultural and Forest Meteorology
/
v.18
no.4
/
pp.242-252
/
2016
A process-based ecosystem model, BIOME-BGC, was applied to simulate seasonal and inter-annual dynamics of carbon and water processes for potential evergreen needleleaf forest (ENF) biome in Korea. Two simulation sites, Milyang and Unljin, were selected to reflect warm-and-dry and cool-and-wet climate regimes, where massive diebacks of pines including Pinus densiflora, P. koraiensis and P thunbergii, were observed in 2009 and 2014, respectively. Standard Precipitation Index (SPI) showed periodic drought occurrence at every 5 years or so for both sites. Since mid-2000s, droughts occurred with hotter climate condition. Among many model variables, Cpool (i.e., a temporary carbon pool reserving photosynthetic compounds before allocations for new tissue production) was identified as a useful proxy variable of tree carbon starvation caused by reduction of gross primary production (GPP) and/or increase of maintenance respiration (Rm). Temporal Cpool variation agreed well with timings of pine tree diebacks for both sites. Though water stress was important, winter- and spring-time warmer temperature also played critical roles in reduction of Cpool, especially for the cool-and-wet Uljin. Shallow soil depth intensified the drought effect, which was, however, marginal for soil depth shallower than 0.5 m. Our modeling analysis implicates seasonal drought and warmer climate can intensify vulnerability of ENF dieback in Korea, especially for shallower soils, in which multi-year continued stress is of concern more than short-term episodic stress.
Talucder, Mohammad Samiul Ahsan;Kim, Joon;Shim, Kyo-Moon
Korean Journal of Agricultural and Forest Meteorology
/
v.23
no.4
/
pp.235-250
/
2021
The overarching question of this study is how a typical rice cultivation system in Gimje, Korea was keeping up with the triple-win challenge of climate-smart agriculture (CSA). To answer this question, we have employed (1) quantitative data from direct measurement of energy, water, carbon and information flows in and out of a rice cultivation system and (2) appropriate metrics to assess production, efficiency, GHG fluxes, and resilience. The study site was one of the Korean Network of Flux measurement (KoFlux) sites (i.e., GRK) located at Gimje, Korea, managed by National Academy of Agricultural Science, Rural Development Administration. Fluxes of energy, water, carbon dioxide (CO2) and methane (CH4) were directly measured using eddy-covariance technique during the growing seasons of 2011, 2012 and 2014. The production indicators include gross primary productivity (GPP), grain yield, light use efficiency (LUE), water use efficiency (WUE), and carbon uptake efficiency (CUE). The GHG mitigation was assessed with indicators such as fluxes of carbon dioxide (FCO2), methane (FCH4), and nitrous oxide (FN2O). Resilience was assessed in terms of self-organization (S), using information-theoretic approach. Overall, the results demonstrated that the rice cultivation system at GRK was climate-smart in 2011 in a relative sense but failed to maintain in the following years. Resilience was high and changed little for three year. However, the apparent competing goals or trade-offs between productivity and GHG mitigation were found within individual years as well as between the years, causing difficulties in achieving the triple-win scenario. The pursuit of CSA requires for stakeholders to prioritize their goals (i.e., governance) and to practice opportune interventions (i.e., management) based on the feedback from real-time assessment of the CSA indicators (i.e., monitoring) - i.e., a purpose-driven visioneering.
Kim, Sehee;Yun, Juyeol;Kang, Minseok;Chun, Junghwa;Kim, Joon
Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
/
2013.11a
/
pp.26-27
/
2013
산림생태계의 에너지, 물질, 정보의 교환 과정과 그 변화를 이해하려면 먼저 생태계의 구조와 기능이 어떻게 상호작용하는지를 이해해야 한다. 생태계의 기능은 한, 두 가지의 특징에 의해서만 이루어지는 것이 아니다. 그렇기 때문에 그 기능을 파악하고 적절히 이용하거나 대응하기 위해서는 한 생태계와 주변 환경 전체를 바라볼 수 있는 시스템 사고가 필요하다. 이에 우리는 생태계의 '구조'를 파악함으로써 생태계의 '상태'를 이해하고자 한다. 본 연구에서는 Ruddell and Kumar (2009)의 접근법을 따라, 어떻게 한 생태계의 상태를 파악할 수 있는가라는 질문을 광릉활엽수림에 적용하여 답하고자 한다. 즉, 우리는 산림생태계가 열린 복잡계라고 가정하고, 생태계 내에서 다양한 프로세스들 간의 시시각각 변하는 네트워크의 구조가 각 시점의 시스템의 상태를 나타내는 지표가 될 수 있다고 가정하였다. 이 연구에서는 그 구조적 특징을 정량화하여 나타내는데 초점을 맞추었다. 각각의 프로세스를 대표하는 상태 변수들 간의 정보 흐름의 양과 방향, 시간 규모를 계산해냄으로써 네트워크 구조를 파악하고자 하였다. 온대 산악지형 활엽수림인 GDK의 2008년 순생태계교환량(NEE), 총일차생산량(GPP), 생태계호흡량(RE), 현열플럭스(H), 잠열플럭스(LE), 하향단파복사(Rg), 강수량(Precipitation), 기압(Pressure), 기온(T), 포차(VPD)의 시계열 자료를 월별로 나누어 최장 18 시간 규모의 정보 흐름을 계산하였다. 정보 흐름의 구조를 파악하기 위하여 변수들 간의 전이엔트로피(Transfer entropy)와 상호정보(Mutual Information)를 계산하는 방법을 사용하였다. 또한 시계열 자료를 이용함으로써 변수들 간에 정보가 전달되는 시간 규모의 특성을 파악할 수 있었다. 최종적으로, 계산한 정보 흐름을 시각화하여 프로세스 네트워크 구조를 나타내었다. 결과는 월별로 생태계의 정보 흐름의 종류, 방향과 시간 규모, 그에 따른 프로세스 간 상호 작용의 특징 등을 보여준다. 이를 통해 계절적 환경 변화에 따라 시스템의 네트워크 구조와 상태가 어떻게 변화하는지 이해할 수 있을 것이다. 이 연구는 추후 우리 연구실에서 생산한 8 년 자료에 적용함으로써 다양한 날씨 및 기후변화와 환경 변화에 따라 생태계의 구조와 상태가 어떻게 변화하는지 연구하는 시작점이 될 것이다. 이 접근법은 단위나 차원에 무관하게 다양한 종류의 자료에 적용할 수 있는 반면에, 일관성 있게 정의된 시스템의 상태 및 그 상태를 구성하는 주요 하부 시스템들의 네트워크 상태를 이해하는데 이용될 수 있다. 본 연구는 비평형 열역학과 복잡계의 관점에서 바라 본 시스템 사고를 적용하려 하는 여러 연구 분야에 새로운 도전을 촉발할 좋은 선행연구가 될 것이라 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.