• Title/Summary/Keyword: 촉진탄산화 반응

Search Result 23, Processing Time 0.031 seconds

A Study on the Optimization of Recycled Aggregate Alkalinity Reducing Facility in the Field (순환골재 알카리 저감장치의 현장 최적화에 관한 연구)

  • Lee, Jong-Chan;Song, Tae-Hyeob;Lee, Sae-Hyun;Kim, Jong-Bok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.53-60
    • /
    • 2011
  • As Construction & Demolition(C&D) debris increase every year, a system has enforced for recycled aggregate made out of C&D debris, then recycled aggregate usage increased in construction field. But as environmental problem by alkalinity of recycled aggregate occurred, the study for lowering alkalinity of recycled aggregate is needed. In this study we made alkalinity reducing facility and installed in the C&D debris midterm-treat field. Then we certified effect of lowering alkalinity and quality of recycled aggregates before and after carbonation. As a result, the most effective carbonation condition is 30seconds in carbonation time, -50~100 kPa of reaction pressure with change of 3cycles. This condition made pH 9.33~9.8 of recycled aggregate possible. The quality of recycled aggregate after carbonation was better than before carbonation in terms of plasticity index, modified CBR, abrasion loss, sand equivalent, liquid limit, size distribution, density and water absorption.

  • PDF

Characteristics of Carbon Capture by the Accelerated Carbonation Method of Circulating Fluidized Bed Combustion Ash (순환 유동층 보일러 애시의 촉진탄산화에 의한 탄소포집 특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.165-172
    • /
    • 2021
  • The purpose of this study is to investigate the carbon capture capacity of various inorganic materials. For this purpose, the change in property of ordinary Portland cement (OPC), blast furnace slag fine powder (GGBS), and circulating fluidized bed boiler ash (CFBC) due to carbonation were analyzed. Carbonation curing was performed on all specimens through the accelerated carbonation experiment, and the amount of carbon capture was quantitatively analyzed by thermogravimetric analysis according to the age of carbonation. From the results, it is confirmed that the carbon capture capacity was shown in all specimens. The carbon capture amount was shown in the order of CFBC, OPC, and GGBS. The 28-day carbon capture of CFBC, OPC, and GGBS was 3.9%, 1.3%, and 9.4%, respectively. Carbon capture reaction occurred rapidly at the beginning of carbonation, and occurred slowly with increasing age. SEM image analysis revealed that an additional product generated by carbonation curing in all specimens was calcium carbonate.

An Experimental Study on the Carbonation Depth of Cement Paste Using Carbonation Reaction Accelerator (탄산화 반응 촉진제를 이용한 시멘트 페이스트의 탄산화 깊이에 관한 실험적 연구)

  • Seok-Man Jeong;Wan-Hee Yang;Dong-Cheol Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2023
  • This study wa s conducted a s pa rt of ma ximizing the use of ca rbon dioxide by a pplying CCU(Ca rbon Ca pture, Utiliza tion) a mong technologies for reducing CO2 in the cement industry. In a carbon dioxide curing environment, changes in carbonation depth and changes in basic physical properties by age due to the mixing of carbonation reaction accelerators were usually targeted at Portland cement paste. In addition, in order to check the fixed amount of CO2 in the concrete field, a thermal analysis method was applied to evaluate CaCO3 decarbonization at high temperatures. As a result of the evaluation, it was confirmed that the carbonation depth in the cured body significantly increased due to the incorporation of CRA in the carbonation depth diffusion performance. In addition, it was confirmed that the weight reduction rate increased by 23.8 % and 40.77 %, respectively, compared to Plain, in the order of curing conditions for constant temperature and humidity and curing conditions for carbonation chambers, so it was confirmed that the amount of excellent CaCO3 produced by the addition of CRA increased as the concentration of CO2 increased.

Simplified Carbonation Model Considering Ca(OH)2 Solubility and Porosity Reduction (수산화칼슘 용해도와 공극률 감소를 고려한 간략화 된 탄산화 모델)

  • Lee, Yun;Kwon, Seung-Jun;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.128-138
    • /
    • 2015
  • Carbonation is one of the most critical deterioration phenomena to concrete structures exposed to high $CO_2$ concentration, sheltered from rain. Lots of researches have been performed on evaluation of carbonation depth and changes in hydrate compositions, however carbonation modeling is limitedly carried out due to complicated carbonic reaction and diffusion coefficient. This study presents a simplified carbonation model considering diffusion coefficient, solubility of $Ca(OH)_2$, porosity reduction, and carbonic reaction rate for low concentration. For verification, accelerated carbonation test with varying temperature and MIP (Mercury Intrusion Porosimetry) test are carried out, and carbonation depths are compared with those from the previous and the proposed model. Field data with low $CO_2$ concentration is compared with those from the proposed model. The proposed model shows very reasonable results like carbonation depth and consuming $Ca(OH)_2$ through reduced diffusion coefficient and porosity compared with the previous model.

The Prediction Model of Carbonation Process by CO2 Diffusion Using the Air Permeability Coefficient for Concrete (콘크리트의 투기계수를 이용한 CO2확산 탄산화진행 예측모델)

  • Kang, Suk-Pyo;Kim, Young-Sun;Song, Ha-Won;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.209-217
    • /
    • 2010
  • Recently, some mathematical models for the prediction on progress of carbonation of concrete were reported. These models take account for $CO_2$ diffusion and chemical reaction between $Ca(OH)_2$ and $CO_2$. Based on the assumption that $CO_2$ diffuses in the carbonation zone and reacts with $Ca(OH)_2$ at the outer face of carbonation zone and non-carbonation zone. In this study, a mathematical model to predict the progress of carbonation of concrete has been established based on the reducing concentration of $Ca(OH)_2$ in the carbonation progress zone, where $Ca(OH)_2$ reacts with $CO_2$ and $Ca(OH)_2$ and $CaCO_3$ coexist. Also, the prediction model of carbonation progress rate of concrete using the air permeability coefficient regarding to $CO_2$ diffusion is developed. As a result of this study, an expression, the model equation is obtained for the prediction of carbonation based on the time and interaction velocity between $CO_2$ and Ca(OH)$_2$ dependent air permeability coefficient. The prediction by the model satisfied the experimental data of the accelerated carbonation for painted concrete. Consequently, the model can predict the rate of carbonation and the potential service life of concrete structure exposed to atmosphere.

A Study on the Microstrucutre Changes by carbonation in NPP Concrete (원전콘크리트의 탄산화에 의한 미세구조 변화에 관한 연구)

  • Lee, Jang-Hwa;Kim, Do-Gyeum;Kim, Ki-Beom;Lee, Ho-Jae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.400-403
    • /
    • 2011
  • 본 논문에서는 시차열중량분석법과 X-선 회절분석법을 이용한 원전콘크리트의 탄산화에 의한 열화도 평가를 진행하였으며 두 가지 정성적 분석방법을 이용한 반정량적 평가 방법을 개발하였다. 원자력발전소 건설에 사용된 동일한 콘크리트 배합을 사용한 시편을 촉진 탄산화 시험장치에 28, 56, 91, 180, 365일 기간에 걸쳐 노출시켜 탄산화를 진행하였으며 노출된 시편은 시차열중량분석법, X-선 회절분석법을 이용하여 탄산화에 따라 발생된 열화생성물의 양을 정성적으로 분석하였다. 그 결과, 탄산화로 인해 발생되는 Calcite의 양이 노출기간에 따라 점차적으로 증가되는 것이 확인되었으며, Calcite의 생성을 위해 이산화탄소와 반응하는 Portlandite의 양이 점차적으로 감소되는 것이 확인되었다. 본 논문에서는 위의 언급된 두 방법의 관계성을 통해 열화도 평가를 진행하였다.

  • PDF

Concrete Carbonation Considering the Protective Performance of Concrete Coating (도막의 열화인자 차단 효과를 고려한 콘크리트 탄산화 깊이에 관한 연구)

  • Park, Dong-Cheon;Kim, Jeong-Jin;Cho, Bong-Suk;Park, Jae-Hong;Jeon, Bong-Min;Oh, Sang-Gyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.501-504
    • /
    • 2008
  • A concrete carbonation model has been constructed that takes account of the diffusion of carbon dioxide through a coating and reaction with calcium hydroxide, and this model has been validated by an accelerated carbonation experiment. (1) By using values for the coatings calculated on the basis of a diffusion.permeation theory as input data for the analysis of diffusion.reaction carbonation in an unsteady state, the effect of the coatings in reducing carbonation can be represented with high accuracy. (2) Through a sensitivity analysis of the diffusion.reaction carbonation model and the experimental results, we found that the diffusion coefficient of calcium hydroxide shows a high interrelationship at 1e-12($m^2/s$). The reaction rate constant for carbonation shows a high interrelationship at 5e-5($m^3/mol/s$).

  • PDF

Carbon Dioxide Storage and Calcium Carbonate Production through Indirect Carbonation Using Paper Sludge Ash and Chelating Reagents (제지슬러지소각재 및 킬레이트제 활용 간접탄산화 방법을 통한 이산화탄소 저장 및 탄산칼슘 생성)

  • Jeon, Junhyeok;Kim, Myoung-Jin
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.35-44
    • /
    • 2019
  • In this study, we conducted experiments to store $CO_2$ and produce $CaCO_3$ through indirect carbonation using paper sludge ash (PSA) and three chelating reagents (fumarate, IDA and EDTA). Fumarate and IDA used as solvents could facilitate the indirect carbonation reaction to store more $CO_2$ than water. When 0.1 M fumarate and IDA were used, $CO_2$ storage was 63 and $89kg-CO_2/ton-PSA$, respectively, and $CaCO_3$ yield was 144 and $202kg-CaCO_3/ton-PSA$. For the case of EDTA, however, the carbonation was hardly progressed. As either the concentration or Ca-ligand stabilization constant of each chelating reagent increased, the calcium extraction efficiency from PSA increased. In addition, the carbonation efficiency was influenced by the Ca-ligand stabilization constant. As the Ca-ligand stabilization constant increased, more calcium could be extracted from the PSA. With the constant larger than that of $CaCO_3$ ($10^{8.35}$), however, the carbonation reaction was not proceeded.

Characteristic analysis of mortar using desulfurization gypsum and carbon dioxide conversion capture materials as a cement admixture (탈황석고와 탄산화물을 혼합재로 사용한 모르타르의 특성 분석)

  • Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Keum-Dan Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.86-91
    • /
    • 2024
  • In this study, the characteristics of mortar using carbondioxide conversion capture materials (CCMs), fabricated by reacting CO2 with desulfurization gypsum (DG) by-produced from a oil refinery, as a cement mixture. Based on the chemical component and particle size analysis results, it estimated that desulfurized gypsum reacted with carbon dioxide to produce carbonate crystals such as CaCO3. Using CCMs as a cement mixture, physical property and durability analysis were conducted by measuring such as workability, compressive strength, compressive strength ratio after freezing-thawing and accelerated carbonation depth. The experimental results showed that as the content of the admixture increased, workability and compressive strength characteristics decreased. Compressive strength after freezing-thawing and accelerated carbonation depth also showed similar characteristics to the physical property measurement results. In addition, compared to desulfurized gypsum, using CCMs showed better physical properties and durability. This was assumed to be due to differences in the crystal phases of the mixed materials such as free-CaO and CaCO3.

An Experimental Study on the Resistance to Penetration of Harmful Ions in Surface Coatings Material Containing Organic Corrosion inhibitor (유기계 방청제를 혼입한 표면피복재의 유해이온 침투저항에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • In general, carbonation and chlorine ions are the most harmful causes of deterioration of concrete structures. Recently, a method has been developed to control the corrosion of rebar in concrete containing chloride by impregnating a Surface coating material with a inhibitor. In this study, accelerated carbonation and differential thermogravimetric analysis (TG-DTA) and CASS tests were carried out to evaluate the characteristics of Surface coatings containing Organic Corrosion inhibitors which are excellent in corrosion inhibition and fix degradation causes $CO_2$ and $Cl^-$. As a result of the experiment, TG-DTA analysis and accelerated carbonation showed that $CO_2$ was directly reacted with amine derivative in concrete by the incorporation of Organic Corrosion inhibitor. In other words, $CO_2$ was immobilized and carbonation inhibition effect was confirmed. In addition, in the CASS test, the specimen coated with the Surface coating material containing the Organic Corrosion inhibitor with $Cl^-$ fixing property showed no corrosion until the 28th day and had excellent performance in preventing corrosion of a rebar by the chloride ion.