• Title/Summary/Keyword: 촉매 환원법

Search Result 243, Processing Time 0.025 seconds

Removal of NOx by Selective Catalytic Reduction Using Ceramic Foam Supports (SCR반응에서 세라믹 폼 지지제를 이용한 NOx 제거)

  • 한요섭;김현중;박재구
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.141-142
    • /
    • 2003
  • 최근 자동차 수요증가 및 산업용 보일러 둥 급증하는 추세이며 이로 인한 대도시 대기오염 문제는 위험수위에 도달해 있다. 이러한 산업용 보일러, 화력발전소등 고정배출원과 자동차에서 발생하는 배기가스에는 인체에 유해한 일산화탄소(CO), 질소산화물(NOx), 황산화물(SOx)등이 다량 함유되어 있다. 유독성 가스중 질소산화물(NOx) 저감방법에는 특히 선택적 촉매환원법(Selective Catalytic Reduction, SCR)이 가장 널리 적용되고 있다. SCR법은 촉매하에서 NH$_3$, CO, 탄화수소(메탄, 에탄올, 프로판 등)의 환원제를 사용하여 NOx를 $N_2$로 전환하시키는 기술이다. (중략)

  • PDF

NOx Reduction Characteristics of Ship Power Generator Engine SCR Catalysts according to Cell Density Difference (선박 발전기관용 SCR 촉매의 셀 밀도차에 따른 NOx 저감 특성)

  • Kyung-Sun Lim;Myeong-Hwan Im
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1209-1215
    • /
    • 2022
  • The selective catalytic reduction (SCR) is known as a very efficient method to reduce nitrogen oxides (NOx) and the catalyst performs reduction from nitrogen oxides (NOx) to nitrogen (N2) and water vapor (H2O). The catalyst, which is one of the factors determining the performance of the nitrogen oxide (NOx) ruduction method, is known to increase catalyst efficiency as cell density increases. In this study, the reduction characteristics of nitrogen oxides (NOx) under various engine loads investigated. A 100CPSI(60Cell) catalysts was studied through a laboratory-sized simulating device that can simulate the exhaust gas conditions from the power generation engine installed in the training ship SEGERO. The effect of 100CPSI(60Cell) cell density was compared with that of 25.8CPSI(30Cell) cell density that already had NOx reduction data from the SCR manufacturing. The experimental catalysts were honeycomb type and its compositions and materials of V2O5-WO3-TiO2 were retained, with only change on cell density. As a result, the NOx concentration reduction rate from 100CPSI(60Cell) catalyst was 88.5%, and IMO specific NOx emission was 0.99g/kwh satisfying the IMO Tier III NOx emission requirement. The NOx concentration reduction rate from 25.8CPSI(30Cell) was 78%, and IMO specific NOx emission was 2.00g/kwh. Comparing the NOx concentration reduction rate and emission of 100CPSI(60Cell) and 25.8CPSI(30Cell) catalysts, notably, the NOx concentration reduction rate of 100CPSI(60Cell) catalyst was 10.5% higher and its IMO specific NOx emission was about twice less than that of the 25.8CPSI(30Cell) catalysts. Therefore, an efficient NOx reduction effect can be expected by increasing the cell density of catalysts. In other words, effects to production cost reduction, efficient arrangement of engine room and cargo space can be estimated from the reduced catalyst volume.

Electrocatalytic Performances of La0.6Ca0.4CoO3 and Pb2Ru2O6 prepared by Amorphous Citrate Precursor Method (Amorphous Citrate Precursor 법으로 제조한 La0.6Ca0.4CoO3와 Pb2Ru2O6의 전기화학적 촉매능)

  • Lee, Churl Kyoung;Sohn, Hun-Joon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The transition metal oxides have been of interest as bifunctional electrocatalysts for bifunctional air electrodes. The amorphous citrate precursor (ACP) process has been optimized to prepare perovskite (La0.6Ca0.4CoO3) and pyrochlore (Pb2Ru2O6) powders with high surface area, and consequent improvement of The electrocatalytic performance in an air electrode with thermal treatment. PTFE -bonded gas diffusion electrodes loaded with perovskitc and pyrochlore catalysts showed good bifunctional performances. The electrodes were fairly stable up to 100 hour in the galvanostatic mode at ${\pm}25mA/cm^2$, from which these electrodes offer promise as practical bifunctional air electrodes.

  • PDF

Synthesis of Pt-Bi/Carbon Electrodes by Reduction Method for Direct Methanol Fuel Cell (환원법에 의한 직접 메탄올 연료전지(DMFC)용 Pt-Bi/Carbon 전극제조)

  • Kim, Kwan Sung;Kim, Min Kyung;Noh, Dong Kyun;Tak, Yongsug;Baeck, Sung-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.479-485
    • /
    • 2011
  • Pt-Bi/C catalysts supported on carbon black with various Pt/Bi ratios were synthesized by a reduction method. Chloroplatinic acid hydrate ($H_2PtCl_6{\cdot}xH_2O$) and bismuth (III) nitrate pentahydrate ($Bi(NO_3)_3{\cdot}5H_2O$) were used as precursors for Pt and Bi, respectively. Before loading metal on carbon, heat treatment and pretreatment of carbon black in an acidic solution was conducted to enhance the degree of dispersion. The physical property of the synthesized catalysts was investigated by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern of untreated Pt-Bi/C catalyst showed BiPt and $Bi_2Pt$ peaks in addition to Pt peaks. These results imply that Bi atoms were incorporated into the Pt crystal lattice by Pt-Bi alloy formation. The catalytic activity for methanol oxidation was measured using cyclic voltammetry in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. The addition of proper amount of Bi was found to significantly improve catalytic activity for methanol oxidation. The catalytic activity for methanol oxidation was closely related to the stability between electrode and electrolyte. In order to investigate the stability of catalysts, chronoamperometry analysis was carried out in the same solution at 0.6 V.

Effect of Oxidation-reduction Pretreatment for the Hydrogenation of Caster Oil over Ni/SiO2 Catalyst (산화-환원 전처리에 따른 Ni/SiO2 촉매의 캐스터오일 수소화)

  • Choi, Yi Sun;Kim, Soo Young;Koh, Hyoung Lim
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.326-331
    • /
    • 2017
  • Castor oil can be used as a useful raw material for chemical industries such as intermediates of surfactants through hydrogenation reaction. In this study, effects of the preparation method and pretreatment condition on the nickel catalyst for the hydrogenation of castor oil were investigated. The nickel catalyst was supported on the silica carrier by the precipitation method with different Ni contents, solution pH values, and precipitants. Repeated pretreatments of oxidation and reduction cycles were then carried out. The activity of the nickel catalyst was measured by comparing the iodine value of the castor oil. The dispersion of nickel on the catalyst was analyzed by X-ray diffraction (XRD), $N_2$ adsorption-desorption, and transmission electron microscopy (TEM). The activity of nickel catalyst was also compared by CO oxidation experiments. The redispersion of nickel occurred on the silica by repeated oxidation and reduction cycles, and this effect contributed to promoting the castor oil hydrogenation activity.

A Study on the Deactivation of Commercial DeNOx Catalyst in Fired Power Plant (화력발전소 상용 탈질 촉매의 활성저하 원인에 관한 연구)

  • Park, Kwang Hee;Lee, Jun Yub;Hong, Sung Ho;Choi, Sang Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.376-381
    • /
    • 2008
  • The deactivation of $V/TiO_2$ catalyst used in SCR (Selective Catalytic Reduction) using ammonia as a reductant to remove the nitrogen oxides (NOx) in the exhaust gas from fired power plant has been studied. The activity and surface area of the catalyst (Used-cat) which was exposed to the exhaust gas for long period have considerably decreased. The characterizations of these SCR catalysts were performed by XRD, FT-IR, FE-SEM, and IC/ICP. The crystal structure of $TiO_2$ both fresh and used catalyst has not been changed. However, $(NH_4)HSO_4$ deposited on the used catalyst surface verified from FT-IR, FE-SEM, and IC/ICP analysis. Moreover, the durability of $SO_2$ was increased by diminishing sulfate ($SO_4^{-2}$)f form.

Formation of Ni layer onto alumina powders by hydrogen reduction technique (가압수소환원법에 의한 알루미나 분말상의 니켈 코팅층 형성에 관한 연구)

  • 김동진;정헌생;유케닝
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.415-423
    • /
    • 1996
  • Hydrogen reduction technique was used to form the nickel layer onto alumina powders in nickel sulfate solutions. The reduction rate and precipitation states of nickel ions were investigated at various experimental conditions such as hydrogen pressure, temperature, $PdCl_{2}$ addition, particle size, and so on. Uniformly nickel coated alumina composite powders were obtained at such condition as reduction temperature of $165^{\circ}C$, hydrogen pressure of 300 psi, and $PdCl_{2}$ amount of $2\;mg/\ell$.

  • PDF

Highly dispersed $Ru/{\alpha}-Al_2O_3$ Catalyst development for selective CO oxidation reaction (선택적 CO 산화반응을 위한 고분산된 $Ru/{\alpha}-Al_2O_3$ 촉매개발)

  • Eom, HyunJi;Koo, KeeYoung;Jung, UnHo;Rhee, YoungWoo;Yoon, WangLai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.228.1-228.1
    • /
    • 2010
  • 선택적 CO 산화반응(PrOx)을 위한 Ru이 고분산 담지된 $Ru/{\alpha}-Al_2O_3$ 촉매를 증착-침전법(deposition-precipitation)으로 제조하였다. 용액의 pH와 aging 시간에 따른 Ru 입자의 크기 변화와 분산도의 영향을 살펴보았으며 함침법(impregnation)으로 비교 촉매를 제조하였다. 촉매의 특성분석은 BET, TPR, CO-Chemisorption분석을 수행하여 촉매의 비표면적, 환원특성, 분산도를 알 수 있었다. 특성분석결과, 증착-침전법으로 제조한 $Ru/{\alpha}-Al_2O_3$ 촉매가 함침법으로 제조한 촉매에 비해 분산도가 높았으며, pH별 촉매 제조에서는 pH6.5로 제조한 촉매가 22.06%로 가장 높은 분산도를 보였다. 또한, 담체의 비표면적 영향에 따른 Ru 입자의 분산도를 살펴보기 위해 ${\gamma}-Al_2O_3$${\alpha}-Al_2O_3$ 담체를 적용한 결과, 비표면적이 작은 ${\alpha}-Al_2O_3$ 담체 표면에서 Ru 분산도가 ${\gamma}-Al_2O_3$ 담체에 비해 높았다. 이는 기공이 발달하여 비표면적이 넓은 ${\gamma}-Al_2O_3$ 담체는 소량의 Ru을 고분산 담지 시 담체 표면보다는 기공 내에 담지 되는 양이 많아 실제 반응 시 반응에 참여하는 표면 활성 금속양이 적음을 알 수 있다. 특히, 선택적 산화반응과 같이 표면에서 빠른 반응이 일어나는 경우, 기공 내부의 활성금속이 반응에 참여하기 어려워 반응 활성이 낮음을 PrOx 반응실험을 통해 확인할 수 있었다. PrOx test 조건은 GHSV 250000~60000, 온도는 80~200도, 람다값은 2~4로 성능 비교하여 실험 하였다. PrOx의 성능평가 결과 담체를 ${\alpha}-Al_2O_3$를 사용하여 deposition-precipitation방법으로 제조한 pH6.5 촉매에서 $100{\sim}160^{\circ}C$에서 90%의 가장 높은 CO conversion을 가지고 18%의 선택도를 가졌다.

  • PDF

NOx removal of Mn-Cu-TiO2 and V/TiO2 catalysts for the reaction conditions (반응조건에 대한 Mn-Cu-TiO2촉매와 V/TiO2촉매의 탈질 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.713-719
    • /
    • 2016
  • The NOx conversion properties of Mn-Cu-$TiO_2$ and $V_2O_5$/$TiO_2$ catalysts were studied for the selective catalytic reduction (SCR) of NOx with ammonia. The performance of the catalysts was investigated in terms of their $NOx$ conversion activity as a function of the reaction temperature and space velocity. The activity of the Mn-Cu-$TiO_2$ catalyst decreased with increasing reaction temperature and space velocity. However, the activity of the $V_2O_5$/$TiO_2$ catalyst increased with increasing reaction temperature. High activity of the Mn-Cu-$TiO_2$ catalyst was observed at temperatures below $200^{\circ}C$. H2-TPR and XPS analyses were conducted to explain these results. It was found that the activity of the Mn-Cu-$TiO_2$ catalyst was influenced by the thermal shock caused by the change of the initial reaction temperature, whereas the $V_2O_5$/$TiO_2$ catalyst was not affected by the initial reaction temperature. In the case of catalyst C, the $NO_x$ conversion efficiency decreased with increasing space velocity. The decrease in the $NO_x$ conversion efficiency with increasing space velocity was much less for catalyst D than for catalyst C.

Highly Dispersed Supported Gold Catalysts -I. Effect of Gold Addition and Active Site Formation- (고분산 담지 금촉매 - I. 금의 첨가 효과 및 활성점 생성 -)

  • Ahn, Ho-Geun;Niiyama, Hiroo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.285-294
    • /
    • 1994
  • Some supported gold catalysts were prepared by impregnation and coprecipitation methods. Effect of gold addition and active sloe formation were studied by investigating particle sizes of gold, amounts of oxygen adsorbed, adsorption properties of CO and NO, and reduction and oxidation properties, etc.. The gold particles of the catalyst by impregnation were irregular and very large as 30~100 nm, but those by coprecipitation were uniform and ultra-fine as about 4 nm. On $Au/Al_2O_3$ catalyst, the addition of gold to inactive $Al_2O_3$ caused the decomposition of $N_2O$, and CO was not irreversibly adsorbed while $O_2$ was atomically and irreversibly adsorbed. The adsorption sites of oxygen were attributed to the active sites which were restricted to the circumference of hemispherical gold particle-support interface rather than all atoms on the surface of gold particle. Also, CO was reversibly and irreversibly adsorbed on $Al_2O_3$ at low temperature, and the addition of gold weakened both reversible and irreversible adsorptions. The affinity for CO on $Au/Co_3O_4$ catalyst decreased conspicuously compared to $Co_3O_4$. The effect of gold addition did not appear in reduction step but did remarkably in reoxidation step; the added gold promoted the reoxidation of the reduced cobalt atoms.

  • PDF