• Title/Summary/Keyword: 촉매 환원법

Search Result 245, Processing Time 0.025 seconds

NOx Reduction in Flue Gas Using Ammonia and Urea solution (암모니아와 요소용액을 이용한 배출가스내 질소산화물 저감 비교 평가)

  • 임영일;이정빈;유경선;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.236-239
    • /
    • 1995
  • 50 kW$_{th}$ 용량의 기체연료버너에서 암모니아 기체와 요소용액을 이용한 선택적 무촉매 환원법 (SNCR;Selective Non-catalytic Reduction) 으로 질소산화물 (NOx) 저감에 관하여 연구하였다. 암모니아는 요소요액보다 더 낮은 반응온도에서 더 높은 효율을 보여주지만 경제성과 암모니아의 부식성 및 맹독성으로 인하여 취급하기에 곤란한 점이 있다. 반면에 요소용액은 적절한 액상첨가제와 기상첨가제를 사용하여 넓은 반응온도범위에서 높은 효율을 얻을 수 있으며 공정상의 조업비를 절감할 수 있다. 본 실험에서는 액상 첨가제인 $CH_3$OH 와 $C_2$H$_{5}$OH 을 사용하여 5$0^{\circ}C$ 정도의 최적반응온도 감소를 얻었으며 LPG 와 합성가스(CH$_4$:CO:H$_2$:$CO_2$=1:4:4:2) 틀 기상 첨가제로 사용하여 높은 질소산화물 저감 효율을 관찰하였다.

  • PDF

The Electrocatalytic Reduction of Dioxygen by Bis-Cobalt Phenylporphyrins in Alkaline Solution (알칼리 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원)

  • Yong-Kook ChoI;Hyun-Ju Moon;Seung-Won Jeon;Ki-Hyung Chjo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.462-469
    • /
    • 1993
  • The electrocatalytic reduction of dioxygen is investigated by cyclic voltammetry and chronoamperometry at glassy carbon electrode and carbon microelectrode coated with a variety of cobalt phenylporphyrins. The n value obtained at carbon microelectrode is slightly different from that determined at glassy carbon electrode. Dioxygen reduction catalyzed by the monormeric porphyrin Co(II)-TPP mainly occurs through the $2e^-$ reduction pathway resulting in the formation of hydrogen peroxide, electrocatalytic process carries out $4e^-$ reduction pathway of dioxygen to $H_2O$ at the electrodes coated with bis-cobalt phenylporphyrins. The electrocatalytic reduction of dioxygen is irreversible and diffusion controlled.

  • PDF

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

Electrocatalytic Effect on the Oxygen Reduction and Electrochemical Properties of Co(Ⅱ)-dimethyl Bipyridine Perchlorate (Co(Ⅱ)$(dimethyl bipyridine)_3(ClO_4)_2$의 전기화학적 성질과 산소환원에 대한 전극 촉매 효과)

  • Kim, Il Kwang;Park, Chong Sool;Han, Wan Soo;Kim, Youn Keun;Jeon, Il Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.385-391
    • /
    • 1997
  • Diffusion Coefficient$(D_0)$ and electrode reaction rate Constant$(K_0)$ of Co$(dimethyl bipyridine)_3(ClO_4)_2$ were determined by cyclic voltammetry and chronoamperometry. It was also investigated that the effects of solvent, concentration, and scan rate, etc. on the diffusion coefficient and the temperature effect on the rate constant. The peak currents and diffusion coefficients were dcreased as increasing the viscosity of solvent. Diffusion coefficient was $5.54{\times}10^{-6 }cm^2/sec$ and the reaction rate constant was $2.39{\times}10^{-3 }/s$ at 25$^{\circ}C$. The thermodynamic parameters such as ${\Delta}G^{\neq},\;{\Delta}H^{\neq},\;and\;{\Delta}S$ were calculated from plotting the reaction rate constants versus the solution temperatures. This compound was shown the catalytic effect on the oxygen reduction that the reduction peak current of oxygen was greatly enhanced and the peak potential was shifted to +0.2 volt.

  • PDF

Microstructural property and catalytic activity of nano-sized MnOx-CeO2/TiO2 for NH3-SCR (선택적 촉매 환원법 재료로서 나노 사이즈 MnOx-CeO2/TiO2 촉매에 대한 미세 구조적 특성과 촉매활성 평가)

  • Hwang, Sungchul;Jo, Seung-hyeon;Shin, Min-Chul;Cha, Jinseon;Lee, Inwon;Park, Hyun;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.115-120
    • /
    • 2016
  • $CeO_2$ is used as a co-catalyst with $TiO_2$ to improve the catalytic activity of $MnO_x$ and characterization of nano-sized powder is identified with de-NOx efficiency. A comparison between $MnO_x-CeO_2/TiO_2$ and single $CeO_2$ was conducted in terms of microstructural analysis to observe the behavior of $CeO_2$ in the ternary catalyst. The $MnO_x-CeO_2/TiO_2$ catalyst was synthesized by sol-gel method and the average particle size of the single $CeO_2$ is about $285{\mu}m$ due to the low thermal stability, whereas the particle size $MnO_x-CeO_2/TiO_2$ is about 130 nm. The strong interaction between Ce and Ti was identified through the EDS mapping by transmission electron microscopy (TEM). The improvement about 20 % of $de-NO_x$ efficiency is observed in the low-temperature ($150^{\circ}C{\sim}250^{\circ}C$) and vigorous oxygen exchange by well-dispersed $CeO_2$ is the reason of catalytic activity improvement.

A Study on the Economic Analysis of Low-Temperature SCR Technology for NOx Reduction by Scenarios (배연탈질을 위한 저온 SCR 기술 도입에 따른 시나리오별 경제성 분석)

  • Hong, Sungjun;Lee, Youah;Jeong, Soonkwan
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.10-22
    • /
    • 2020
  • As the national demand for solving the fine dust problem has increased, the government has announced intensive measures to deal with fine dust. So recently, selective catalytic reduction(SCR) has attracted attention as a technology for removing nitrogen oxides from precursors of fine dust. In this study, the government's policies related to fine dust and the current status of market and R&D were investigated, and economic analysis by scenarios was conducted by dividing cases where SCR technology was applied to industries. The results of economic analysis for each scenario were calculated using NPV, and companies with no denitrification facilities(Case 1) introduced general SCR technologies(Scenario 1-1) and low-temperature SCR technologies(Scenario 1-2). In addition, companies that have already installed denitrification facilities(Case 2) analyzed the two categories, using the general SCR technology as it is(Scenario 2-1) and replacing it with low-temperature SCR technology(Scenario 2-2). Comparative analysis was performed based on the results of each NPV.

Preparation of Gold-Peptide Hybrid Nanoparticles and Its Applications in Catalytic Reduction of Methylene Blue (금-펩타이드 하이브리드 나노입자의 제조와 메틸렌 블루의 촉매 환원 응용)

  • Hur, Yun-Mi;Min, Kyoung-Ik
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.163-167
    • /
    • 2021
  • In the present work, we studied a method for the synthesis of uniform gold-peptide hierarchical superstructures using tyrosine rich peptide, Tyr-Tyr-Leu-Tyr-Tyr (YYLYY). Peptide nanoparticles self-assembled by dityrosine bonds were synthesized through the photo-crosslinking reaction of the peptide, and gold-peptide hybrid nanoparticles were synthesized using biomineralization properties of tyrosine in a green synthetic manner. The synthesized gold-peptide hybrid nanoparticles were then characterized by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, UV-vis spectroscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, the catalytic activity of gold-peptide hybrid nanoparticles was confirmed by the reduction reaction of methylene blue where the catalytic reaction rate constant was 13.4 × 10-3 s-1.

Trend of Nitrogen Oxide Reduction Technologies in Cement Industry (시멘트 산업에서의 질소산화물 저감 기술 동향)

  • Seo, JunHyung;Kim, YoungJin;Cho, KyeHong;Cho, JinSang;Han, KyungHo;Yoon, DoYoung
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.114-124
    • /
    • 2020
  • In the cement industry, NOx emission is recognized as an important problem, and NOx reduction technologies can be divided into process change, staged combustion, low NOx burner, selective non-catalytic reduction and selective catalytic reduction method. The operation of the selective non-catalytic reduction method, which is the most used in the cement industry, is expected to make it difficult to meet the emission standards to be strengthened in the future, and it is necessary to improve equipment such as SCR and secure technologies. Recently, we are developing technologies for simultaneous application of SNCR and SCR, dust and denitrification filter technology, and removal technology using NO oxidation.

Recovery of the Vanadium and Tungsten from Spent SCR Catalyst Leach Solutions by Hydrometallurgical Methods (SCR 폐촉매 침출액으로부터 습식제련법에 의한 바나듐, 텅스텐의 회수)

  • Choi, In-Hyeok;Moon, Gyeonghye;Jeon, Jong-Hyuk;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • In new millennium, wide-reaching demands for selective catalytic reduction (SCR) catalyst have been increased gradually in new millennium. SCR catalyst can prevent the NOx emission to protect the environment. In SCR catalyst the main composition of the catalyst is typically TiO2 (70~80%), WO3 (7~10%), V2O5 (~1%) and others. When the SCR catalysts are used up and disposed to landfills, it is problematic that those should exist in the landfill site permanently due to their extremely low degradability. A new advanced technology needs to be developed primarily to protect environment and then recover the valuable metals. Hydrometallurgical techniques such as leaching and liquid-liquid extraction was designed and developed for the spent SCR catalyst processing. In a first stage, V and W selectively leached from spent SCR catalyst, then both the metals were processed by liquid-liquid extraction process. Various commercial extractants such as D2EHPA, PC 88A, TBP, Cyanex 272, Aliquat 336 were tested for selective extraction of title metals. Scrubbing and stripping studies were tested and optimized for vanadium and tungsten extraction and possible separation. 3rd phase studies were optimized by using iso-decanol reagent.

Adsorptive Catalytic Wave of Chromium-Cupferron Complex (크롬-쿠페론 착물의 흡착 촉매파)

  • Kwon, Young-Soon;Seo, Soh-Jin;Lee, Sang-Mi
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2002
  • The interfacial accumulation of the chromium-cupferron complex and the catalytic wave of its redox process is characterized by cyclic voltammetry. One cathodic peak is observed in the forward scan at -1.45 V. Scanning in the reverse direction produces a inverted peak at -1.39 V, which is indicative of a catalytic process. The optimal conditions of inverted peak were found to be 1 mM borate buffer solution(pH 9.48) containing $1{\times}10^{-4}M$ cupferron, holding potential of -1.8 V and scan rate of 20 mV/s. Using main peak, a preconcentration time of 1 min results in a detection limit of $3.2{\times}10^{-10}M$.