• Title/Summary/Keyword: 촉매 열화

Search Result 116, Processing Time 0.022 seconds

Simulated Degradation of a Catalytic Converter (배기정화용 촉매장치의 열화 모사)

  • 임명택;위전석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • Use of a phenomenological model, developed far prediction of catalytic deactivation, is demonstrated in comparing harshness of different driving cycles that are currently used to rapidly age catalytic converters on engine test benches. The model shows that seemingly equivalent driving cycles cause the catalytic converters to reach significantly different levels of deactivation. The comparison of the model prediction with the limited vehicle data seems encouraging despite the simplicity of the model at the current stage of its infancy.

Characteristics of Adsorption, Desorption of Exhaust Gases and Deactivation of LNT and SCR Catalysts for Diesel Vehicles (디젤 자동차용 LNT, SCR 촉매의 배출가스 흡착, 탈리 및 열화 특성)

  • Seo, C.K;Kim, H.N.;Choi, B.C.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.13-19
    • /
    • 2010
  • 이 논문에서는 디젤자동차용 LNT와 SCR 촉매의 NO, $NH_3$ 흡착 및 탈리의 기본 특성과 수열화 온도와 시간 및 정량화된 황피독 농도에 대한 de-$NO_x$ 촉매의 내구성을 평가하였다. LNT 촉매는 열적으로 열화됨에 따라 Pt 및 Ba의 소결 및 응집으로 활성이 떨어져 $NO_x$ 전환율은 감소하였다. 반면에 Pt의 비활성화로 중간생성물인 $NH_3$ 생성량은 증가하였으며, 이때 생성된 $NH_3$는 LNT+SCR 복합시스템의 SCR 촉매의 환원제 역할을 담당한다. 1.0 g/L 이상의 황이 피독된 LNT 촉매는 탈황을 하여도 질소 산화물 흡장물질(Ba) 의 성능이 회복이 되지 않아 $NO_x$ 전환율은 회복되지 않았으며, 탈황 후 Pt 재활성화로 인해 NO2 및 SCR 환원제인 $NH_3$ 생성량은 증가하였다. SCR 촉매의 $NO_x$ 전환율은 $700^{\circ}C$ 36h, $800^{\circ}C$ 24h로 수열화 시킨 촉매는 전이금속 입자 성장 및 zeolite 구조 파괴로 인하여 급격하게 떨어졌으며, 0.36 g/L 황 피독된 촉매는 zeolite가 가지는 강산성 특정으로 내피독성이 강하여 탈황시 $NO_x$ 전환율은 회복되었다.

Removal of photoresist residue on Cu foil for synthesis of graphene

  • Jeong, Dae-Seong;Yun, Hye-Ju;Lee, Geon-Hui;Sim, Ji-Ni;Lee, Jeong-O;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.367.2-367.2
    • /
    • 2016
  • 그 동안 열화학 기상 증착법으로 고결정의 그래핀을 합성하는 연구가 많이 진행되었다. 더불어 그래핀을 소자로 이용하기 위해서는 합성하는 과정에서 그래핀의 모양 및 형태를 제어하는 방법이 필요하기 때문에 이와 관련된 연구들 또한 진행되었다. 일반적으로 그래핀의 모양은 촉매의 모양에 의존하기 때문에 촉매 금속의 패터닝에 관심이 집중되었고, 보다 작은 크기의 구조를 완성하기 위해 포토리소그래피(photolithography)법을 이용하는 것이 보편화 되었다. 본 연구에서는 촉매 금속을 이용하여 그래핀을 합성시, 촉매 표면에 잔여하는 유기물(포토리소공정으로 인해 발생하는 잔여물)이 열화학 기상 증착법으로 그래핀을 합성하는 방법에 문제를 야기한다는 것을 확인하였다. 이를 해결하기 위해 플라즈마를 이용하여 잔여 유기물을 제거하였고, 그에 따라 합성된 그래핀의 결정성이 향상되는 것을 확인하였다.

  • PDF

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Position-Dependent Cathode Degradation of Large Scale Membrane Electrode Assembly for Direct Methanol Fuel Cell (직접 메탄올 연료전지용 대면적 막-전극 접합체 공기극의 위치별 열화 현상)

  • Kim, Soo-Kil;Lee, Eun-Sook;Kim, Yi-Young;Kim, Jang-Mi;Joh, Han-Ik;Ha, Heung-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • With respect to the durability of large scale ($150cm^2$) membrane electrode assembly (MEA) of direct methanol fuel cell (DMFC), degradation phenomena at cathode is monitored and analyzed according to the position on the cathode surface. After constant current mode operation of large scale MEA for 500 hr, the MEA is divided into three parts along the cathode channel; (close to) inlet, middle, and (close to) outlet. The performance of each MEA is tested and it is revealed that the MEA from the cathode outlet of large MEA shows the worst performance. This is due to the catalyst degradation and GDL delamination caused by flooding at cathode outlet of large MEA during the 500 hr operation. Particularly on the catalyst degradation, the loss of electrochemically active surface area (ECSA) of catalyst gets worse along the cathode channel from inlet to outlet, of which the reason is believed to be loss of catalysts by dissolution and migration rather than their agglomeration. The extent of loss in the performance and catalyst degradation has strong relation to the cathode flooding and it is required to develop proper water management techniques and separator channel design to control the flooding.

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향)

  • Sohyeong Oh;Yuhan Han;Donggeun Yoo;Myoung Hwan Kim;Ji Young Park;Youngjin Choi;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.

Study on the Platinum Deposition in Membrane of Polymer Electrolyte Membrane Fuel Cell during Electrode Degradation Process (고분자전해질 연료전지의 전극 열화 과정에서 고분자막에 석출된 백금에 관한 연구)

  • Oh, Sohyeong;Gwon, Hyejin;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.202-207
    • /
    • 2022
  • The study on electrode degradation of Proton Exchange Membrane Fuel Cell (PEMFC) was mainly studied on the particle growth and active area reduction of Pt on the electrode. The degradation of the electrode catalyst Pt in contact with the membrane affects the deterioration of the polymer membrane, but there are not many studies related to this. In this study, the phenomenon of the deposition of deteriorated Pt inside the polymer membrane during the accelerated electrode catalyst degradation test and its effects were studied. The voltage change (0.6 V ↔ 0.9 V) was repeated up to 30,000 cycles to accelerate the platinum degradation rate. When the voltage change cycle was repeated while oxygen was introduced into the cathode, the amount of Pt deposited inside the film was larger than when nitrogen was introduced. As the number of voltage change cycles increased, the amount of Pt deposited inside the membrane increased, and Pt dissolved in the cathode moved toward the anode, showing a uniform distribution throughout the membrane at 20,000 cycles. In the process of the accelerated electrode catalyst degradation test, the hydrogen crossover current density of the membrane did not change, and it was confirmed that the deposited Pt did not affect the durability of the membrane.

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis (수전해 반응에 의한 고분자전해질 연료전지 전극과 막의 열화)

  • Jeong, Jae-Hyeun;Shin, Eun-Kyung;Jeong, Jae-Jin;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.695-700
    • /
    • 2014
  • Proton Exchange Membrane Fuel Cells (PEMFC) can generate hydrogen and oxygen from water by electrolysis. But the electrode and polymer electrolyte membrane degrade rapidly during PEM water electrolysis because of high operation voltage over 1.7V. In order to reduce the rate of anode electrode degradation, unsupported $IrO_2$ catalyst was used generally. In this study, Pt/C catalyst for PEMFC was used as a water electrolysis catalyst, and then the degradation of catalyst and membrane were analysed. After water electrolysis reaction in the voltage range from 1.8V to 2.0V, I-V curves, impedance spectra, cyclic voltammograms and linear sweep voltammetry (LSV) were measured at PEMFC operation condition. The degradation rate of electrode and membrane increased as the voltage of water electrolysis increased. The hydrogen yield was 88 % during water electrolysis for 1 min at 2.0V, the performance at 0.6V decreased to 49% due to degradation of membrane and electrode assembly.

Synthesis of the Carbon Nano/micro Coils Applicable to the Catalyst Support to Hold the Tiny Catalyst Grain (매우 작은 크기의 촉매 알갱이를 지지하기 위한 촉매 지지대용 탄소 나노/마이크로 코일의 합성)

  • Park, Chan-Ho;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.277-284
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. The Ni layer on the $SiO_2$ substrate was used as a catalyst for the formation of the carbon coils. The characteristics (formation densities, morphologies, and geometries) of the as-grown carbon coils on the substrate with or without the $H_2$ plasma pretreatment process were investigated. By the relatively short time (1 minute) $H_2$ plasma pretreatment on the Ni catalyst layered-substrate prior to the carbon coils synthesis reaction, the dominant formation of the carbon microcoils on the substrate could be achieved. After the relatively long time (30 minutes) $H_2$ plasma pretreatment process, on the other hand, we could obtain the noble-shaped geometrical nanostructures, namely the formation of the numerous carbon nanocoils along the growth of the carbon microcoils. This noble-shaped geometrical nanostructure seemed to play a promising role as the good catalyst support for holding the very tiny Ni catalyst grains.