• Title/Summary/Keyword: 촉매가스화

Search Result 308, Processing Time 0.022 seconds

Preparation and Characterization of Nanocrystalline Spinel Ferrites by Chemical Co-precipitation (화학적 공침법을 이용한 침상형 페라이트 합성)

  • Shen, Jiao-Wen;Lim, Yun-Hui;Jo, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.185-189
    • /
    • 2011
  • In this work, nano-sized M-ferrites (M=Co, Ni, Cu, Zn) for the decomposition of carbon dioxide were synthesized by the chemical co-precipitation. From the thermogravimetric analysis, it was clear that the maximum weight loss of each sample took place below $350^{\circ}C$. High temperature calcination resulted in more systematic crystallines, smaller specific surface area and larger particle size. An analysis by FTIR in the range of $375{\sim}406cm^{-1}$ revealed the presence of chelates at the octahedral site, which implies the formation of spinel structure in the ferrites. The current work showed that a $500^{\circ}C$ is the optimum heat treatment temperature of metal ferrites for $CO_2$ decomposition reaction.

An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System (복합대기오염 저감 시스템을 위한 오존 고속산화 기반 고도산화공정)

  • Uhm, Sunghyun;Hong, Gi Hoon;Hwang, Sangyeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.237-242
    • /
    • 2021
  • Simultaneous removal technologies of multi-pollutants such as particulate matters (PMs), NOx, SOx, VOCs and ammonia have received consistent attention due to the enhancement of pollutant abatement efficiency in addition to the stringent environmental regulation and emission standard. Pretreatment of insoluble NO by an ozone oxidation can be considered to be more effective route for saving space occupation as well as operation cost in comparison with that of traditional selective catalytic reduction (SCR) process. Moreover the primary advantage of ozone oxidation process is that the simultaneous removal with acidic gas including SOx is also available. Herein, we highlight recent studies of multi-pollutant abatement via ozone oxidation process and the promising research topics for better application in industrial sectors.

Synthesis of Long-Chain Unsaturated Acetates (장직쇄상(長直鎖狀) 불포화(不飽和) 초산화합물(醋酸化合物)의 합성(合成)에 관(關)한 연구(硏究))

  • Oh, Sung-Ki
    • Applied Biological Chemistry
    • /
    • v.19 no.1
    • /
    • pp.1-23
    • /
    • 1976
  • The female moths of Lepidoptera comprising over 1,000,000 described species possess long-chain unsaturated alcohols or esters as the typical structure of potential sex attractants. In this experiment, various stereoisomers of $C_{16}-unsaturated$ acetates were synthesized for potential sex attractants; e.g., $CH_3(CH_2)_mCH=CH(CH_2)_nOR$ (m=0-12, n=1-13, R=H and $-COCH_3$). Seventeen acetates were spectrometrically examined so that the data would provide a ready catalog of gas chromatography and mass spectrometric data for comparison with natural insect sex attractants. Exclusively cis and trans isomers were obtained by the catalytic and chemical reduction methods, respectively. Commercially available $CH_3(CH_2)_mBr,\;CH_3(CH_2)_mC{\equiv}CH,\;HC{\equiv}C(CH_2)_nOH\;and\;HO(CH_2)_n\;OH$ were used for the synthetic starting material. 1-Alkynes, $CH_3(CH_2)_m\;C{\equiv}CH$ exceeding nine methylene groups did not condense with alkyl dihalides. The yield of coupling products was gradually decreased with increasing the molecular weight of diols. In the coupling reaction of $BrCH_2CH_2$ OTHP with acetylene gas, the tetrahydropyranyl ether of bromohydrin produced undesirable elimination product. In this experiment, it seems that p-toluenesulfonic acid is greatly favoured hydrolyzing agent over dilute sulfuric acid in the hydrolysis of the tetrahydropyranyl ether of long-chain alkynols.

  • PDF

Characteristics and Fabrication of Thermal Oxidized-SnO2 (SnO2 열산화감지막의 제작 및 특성)

  • Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.342-349
    • /
    • 2002
  • New formation technique of metal oxide sensing film was proposed m this paper. Silicon wafer with Pt electrodes was used as a substrate for depositing metal Sn film. Metal Sn was deposited in the state of not continuous film but only island state. The samples were prepared to obtain the optimal condition of metal Sn deposition. The resistances of deposited Sn onto Pt electrodes amounted to $1\;k{\Omega}$, $5\;k{\Omega}$, $10\;k{\Omega}$ and $50\;k{\Omega}$, respectively. Also The sample with $1,500\;{\AA}$ thickness of Sn was prepared m order to compare sensing properties between conventional type and proposing type. After deposition of metal Sn, $SnO_2$ was formed by thermal oxidation method for 3 hrs. in $O_2$ ambient at $700^{\circ}C$. Surface morphology, crystal structure and surface roughness of oxidized-sensing film were examined by SEM, XRD, and AFM, respectively. From the results of these analyses, the optimal deposition condition of Sn was that the Pt electrode resistance became $10\;k{\Omega}(300\;{\AA})$. Also, the sensing characteristics of fabricated sensing film for various concentrations of butane, propane and carbon monoxide gases were measured at he operating temperatures of $250^{\circ}C$, $300^{\circ}C$ and $350^{\circ}C$, respectively. Although catalyst as not added to the sensing film, it has exhibited the high sensitivity to all the test gases.

Emission Character of Dioxins and Precursors in the Control Devices of the MSWI (II) (도시쓰레기 소각로 방지시설 중 다이옥신류 및 전구물질의 배출특성(II))

  • Shin, S.K.;Chung, Y.H.;Lee, W.S.
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.68-74
    • /
    • 1999
  • The Concentrations of PCDDs/PCDFs and their precusors(chlorophenols, chlorobenzenes, PCB) were analyzed from the dioxin control device such as EP and SCR to know the emission patterns of these compounds and find the dioxin index compounds. The dioxin concentration increased 7 times in outlet part than inlet part of EP and the concentration of CBs, CPs and PCBs also were increased through this control device. These phenomia may be related to the operating temperature of Electroprecipitator(EP), which the operating temperature is near the $300^{\circ}C$, the method of the decreasing the operating temperature need to consider to prevent the formation of these compounds. In the selected catalytic reactor with wet scrubber(SCR+WS), these compounds were removed after passing the device over 90% for CPs, 30~40% for CBs and 60% for PCBs. But, the systematic study have to perform to reduce the formation of PCDDs/PCDFs and precusors.

  • PDF

Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas (배출가스의 질소산화물과 이산화황 동시 저감 기술)

  • Park, Hyun-Woo;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.607-618
    • /
    • 2017
  • Harmful air pollutants are exhausted from the various industrial facilities including the coal-fired thermal power plants and these substances affects on the human health as well as the nature environment. In particular, nitrogen oxides ($NO_x$) and sulfur dioxide ($SO_2$) are known to be causative substances to form fine particles ($PM_{2.5}$), which are also deleterious to human health. The integrated system composed of selective catalytic reduction (SCR) and wet flue gas desulfurization (WFGD) have been widely applied in order to control $NO_x$ and $SO_2$ emissions, resulting in high investment and operational costs, maintenance problems, and technical limitations. Recently, new technologies for the simultaneous removal of $NO_x$ and $SO_2$ from the flue gas, such as absorption, advanced oxidation processes (AOPs), non-thermal plasma (NTP), and electron beam (EB), are investigated in order to replace current integrated systems. The proposed technologies are based on the oxidation of $NO_x$ and $SO_2$ to $HNO_3$ and $H_2SO_4$ by using strong aqueous oxidants or oxidative radicals, the absorption of $HNO_3$ and $H_2SO_4$ into water at the gas-liquid interface, and the neutralization with additive reagents. In this paper, we summarize the technical improvements of each simultaneous abatement processes and the future prospect of technologies for demonstrating large-scaled applications.

Effect of pH on Growth and Ethanol Production of Clostridium ljungdahlii (Clostridium ljungdahlii 성장 및 에탄올 생산에 pH가 미치는 영향)

  • Park, So Jung;Hong, Sung-Gu;Kang, Kwon-Kyoo;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.562-565
    • /
    • 2011
  • In this study, we developed a bioprocess using Clostridium ljungdahlii as a biological catalyst to produce bio-ethanol, and the effect of pH on microbial growth and ethanol production was investigated. From the results of fermentation at various initial pH condition without pH control, pH of fermentation broth decreased to 4.5 within 24 h due to accumulation of by-product acetic acid and both microbial growth and ethanol production were stopped. The experimental result of initial pH 8 showed the highest microbial growth and ethanol production (0.53 g/L), since the pH drop was relatively slow. From the experiment of pH 7 maintained fermentation using pH controllable bioreactor, the maximum cell dry weight of 1.65 g/L and the maximum ethanol concentration of 1.43 g/L were obtained within 24 h. In conclusion, the C. ljungdahlii growth was enhanced by pH maintenance of neutral range, and the ethanol production was also enhanced based on the growth-associated ethanol production characteristics of C. ljungdahlii.

SO2 Reduction with CO over SnO2-ZrO2(Sn/Zr=2/1) Catalyst for Direct Sulfur Recovery Process with Coal Gas: Optimization of the Reaction Conditions and Effect of H2O Content (석탄가스를 이용한 직접 황 회수공정을 위한 SnO2-ZrO2(Sn/Zr=2/1) 촉매 상에서의 CO에 의한 SO2 환원 반응: 반응조건 최적화 및 수분의 영향)

  • Han, Gi Bo;Shin, Boo-Young;Lee, Tae Jin
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • In this study, the reactivity of a $SnO_2-ZrO_2$(Sn/Zr = 2/1) catalyst for $SO_2$ reduction by CO was investigated in order to optimize the various reaction conditions such as temperature, gas hourly space velocity (GHSV), and [CO]/[$SO_2$] molar ratio. The reaction temperature in the range of $300{\sim}550^{\circ}C$, space velocity in the range of $5000{\sim}30000cm^3/[g_{-cat}{\cdot}h]$ and [CO]/[$SO_2$] molar ratio in the range of 1.0~4.0 were employed. The optimum temperature, GHSV, and [CO]/[$SO_2$] molar ratio were determined to be $325^{\circ}C$, $10000cm^3/[g_{-cat}{\cdot}h]$, and 2.0, respectively; under these conditions, $SO_2$ conversion was over 99% and sulfur selectivity was over 95%. In addition, the effect of $H_2O$ content on the $SO_2$ reduction by CO was also investigated. As the $H_2O$ content increased from 2 vol% up to 6 vol%, the reactivity and sulfur selectivity decreased. In case of 2 vol% $H_2O$ content, the reaction temperature and [CO]/[$SO_2$] molar ratio were varied in the range of $300{\sim}400^{\circ}C$ and 1.0~3.0. The optimum temperature and [CO]/[$SO_2$] molar ratio were $340^{\circ}C$ and 2.0, respectively under which $SO_2$ conversion and sulfur selectivity were about 90% and 87%, respectively.