• Title/Summary/Keyword: 촉각장치

Search Result 84, Processing Time 0.033 seconds

Surface Modification of Polyimide by Stationary Plasma thruster-type lasma Source : Correlations with Ahesion (SPT-type Plasma 발생장치를 이용한 폴리이미드의 표면개질과 접착력의 관계)

  • ;Ermakov Yu. A.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.181-184
    • /
    • 2003
  • Low Energy High flux Plasma Source인 Stationary Plasma thruster (SPT)를 이용하여 폴리이미드의 표면개질 후 접촉각과 표면에너지의 변화를 조사하고 접착력과의 관계를 조사하였다. 이온에너지는 180 eV - 200 eV, 이온전류 밀도는 수백 ${\mu}A/cm^2$, 이온선량은 $5\times10^{15}/cm^2$부터, $10\times^{18}/cm^2$$Ar^+,\;N_2^+,\;O_2^+$를 이온 주입시켰다. 표면 처리된 폴리이미드에 대한 접촉각 변화는 dual contact anglemeter로 증류수와 에틸렌글리콜을 이용하여 측정하였고, 표면에너지의 변화량을 구하였다. 접촉각의 변화는 아르곤 이온의 경우는 최저 $35^{\circ}$, 질소와 산소의 경우 $1\times10^{17}/cm^2$에서 각각 $14^{\circ},\;10^{\circ}$정도의 전촉각을 보였으며, $5\times10^{17}/cm^2$이상에서는 측정하기 불가능하였다. 산소 이온빔으로 처리된 PI의 표면을 x-ray photoelectron spectroscopy를 통하여 측정하여본 결과, 친수성기가 많이 형성되었음을 확인할 수 있었다. 접촉각 측정으르부터 PI의 표변에너지는 42.1 mN/m에서 아르곤 이온빔의 처리 시 65.2 mN/m로 산소 이온빔의 처리 시 81.2 mN/m로 각각 1.5배, 1.9배 정도 증대하였다. 산소 이온빔으로 처리된 PI 표면위에 스퍼터링으로 300 nm 정도의 clad layer 형성 후 $20{\mu}m$ 정도의 구리 전기 도금막을 형성하여, peel 강도를 측정한 결과 0.79 kg/cm의 강도를 얻을 수 있었다.

  • PDF

An Optimum Design of the Tactile Feedback Device using the Electromagnetic Attractive Force by the Probable Flux Paths Method (가정 자로법에 의한 전자기 흡입력의 촉각궤환장치의 최적설계)

  • 이정훈;장건희;최동훈;박종오;이종원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.464-478
    • /
    • 1998
  • In teleoperation, it is important for an operator to feel as if he really were in a distant place. To realize this objective, the various information from a remote site must be presented to the operator. Even though tactile information is very important to efficiently execute a task, it is not yet sufficiently provided for the operator. In this paper, we propose the new mechanism that can provide the more dexterous tactile information to the operator This device utilizing the electromagnetic force is designed to be compact and light enough to be attached to the fingerpad, and designed to be controlled continuously. The magnetic circuit is derived by the probable flux paths method in order to take forces at any given dimension. An optimization technique is also proposed to maximize the tactile force that humans can perceive under the same conditions. The objective function is formulated as maximizing displacements indented on the fingerpad, considering the mechanism of human tactile perception. The optimization formulation is subject to the geometric and rising temperature constraints in the coil. It is demonstrated that, by optimization, the tactile force increases by 24%, compared with that obtained from the initial design.

  • PDF

A Study of Fire Detection Algorithm for Efficient 4D System (효율적 4D 시스템을 위한 화염 검출 알고리즘 연구)

  • Cho, Kyoung-woo;Wang, Ki-cho;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.1003-1005
    • /
    • 2013
  • 4D technology provides physical effects with the general videos or 3D videos. Implementing 4D technology, producing 4D metadata according to video play time and frame data is necessary. In this paper, we propose a method to provide physical effects by judging the temperature of video according to color information. In the proposed method, we provide physical effects to watcher by cognizing the color information in the video when a disaster such as fire is occurred. By using the method, it is expected that 4D matadata for sensing experience like heater device can be produced without programmers automatically.

  • PDF

Wearable Tactile Display Based on Soft Actuator (유연한 구동기를 이용한 착용 가능한 촉각 제시 장치 개발)

  • Koo, Ig-Mo;Jung, Kwang-Mok;Park, Jong-Kil;Koo, Ja-Choon;Lee, Young-Kwan;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.89-101
    • /
    • 2006
  • Tactile sensation is one of the most important sensory functions for human perception of objects. Recently, there have been many technical challenges in the field of tactile display as well as tactile sensing. In this paper, we propose an innovative tactile display device based on soft actuator technology with ElectroActive Polymer(EAP). This device offers advantageous features over existing devices with respect to intrinsic flexibility, softness, ease of fabrication and miniaturization, high power density, and cost effectiveness. In particular, it can be adapted to various geometric configurations because it possesses structural flexibility, so it can be worn on any part of the human body such as finger, palm, and arm etc. It can be extensively applied as a wearable tactile display, a Braille device for the visually disabled, and a human interface in the future. A new design of the flexible actuator is proposed and its basic operational principles are discussed. In addition, a wearable tactile display device with $4{\times}5$ actuator array(20 actuator cells) is developed and its effectiveness is confirmed.

  • PDF

A Multi Modal Interface for Mobile Environment (모바일 환경에서의 Multi Modal 인터페이스)

  • Seo, Yong-Won;Lee, Beom-Chan;Lee, Jun-Hun;Kim, Jong-Phil;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.666-671
    • /
    • 2006
  • 'Multi modal 인터페이스'란 인간과 기계의 통신을 위해 음성, 키보드, 펜을 이용, 인터페이스를 하는 방법을 말한다. 최근 들어 많은 휴대용 단말기가 보급 되고, 단말기가 소형화, 지능화 되어가고, 단말기의 어플리케이션도 다양해짐에 따라 사용자가 보다 편리하고 쉽게 사용할 수 있는 입력 방법에 기대치가 높아가고 있다. 현재 휴대용 단말기에 가능한 입력장치는 단지 단말기의 버튼이나 터치 패드(PDA 경우)이다. 하지만 장애인의 경우 버튼이나 터치 패드를 사용하기 어렵고, 휴대용 단말기로 게임을 하는데 있어서도, 어려움이 많으며 새로운 게임이나 어플리케이션 개발에도 많은 장애요인이 되고 있다. 이런 문제점들은 극복하기 위하여, 본 논문에서는 휴대용 단말기의 새로운 Multi Modal 인터페이스를 제시 하였다. PDA(Personal Digital Assistants)를 이용하여 더 낳은 재미와 실감을 줄 수 있는 Multi Modal 인터페이스를 개발하였다. 센서를 이용하여 휴대용 단말기를 손목으로 제어를 가능하게 함으로서, 사용자에게 편리하고 색다른 입력 장치를 제공 하였다. 향후 음성 인식 기능이 추가 된다면, 인간과 인간 사이의 통신은 음성과 제스처를 이용하듯이 기계에서는 전통적으로 키보드 나 버튼을 사용하지 않고 인간처럼 음성과 제스처를 통해 통신할 수 있을 것이다. 또한 여기에 진동자를 이용하여 촉감을 부여함으로써, 그 동안 멀티 모달 인터페이스에 소외된 시각 장애인, 노약자들에게도 정보를 제공할 수 있다. 실제로 사람은 시각이나 청각보다 촉각에 훨씬 빠르게 반응한다. 이 시스템을 게임을 하는 사용자한테 적용한다면, 능동적으로 게임참여 함으로서 좀더 실감나는 재미를 제공할 수 있다. 특수한 상황에서는 은밀한 정보를 제공할 수 있으며, 앞으로 개발될 모바일 응용 서비스에 사용될 수 있다.

  • PDF

A Study on Realization of In-game Animation (인 게임 애니메이션의 실재화에 관한 연구)

  • Lee, Seon-Young
    • Cartoon and Animation Studies
    • /
    • s.42
    • /
    • pp.177-194
    • /
    • 2016
  • This study investigated an evolutionary process of In-game Animation and researched on the action of realization establishing virtual reality. In-game Animation, functioning as contents to visualize games, is responsible for conveying information to achieve goals of games. In-game Animation which is affected by graphic technology was initiated with setting up indicators by dot and line. Followed by the development of technology, In-game Animation has pursued realization, after passing through processes of iconography, materialization, and dimensionalization. The realization of In-game Animation does not simply imitate the real world but creates meaning of reality by establishing space with various factors such as characters and background along with the story, under the premise of virtuality. The realization of In-game Animation is very important to provide the experience of immersion, as it forms a sense of presence through such visual tactility. The process to create meaning of reality provides gamers with experiences, and leads them to expand senses through visual perception and finally absorb the virtuality as reality. Therefore, the image of In-game Animation does not simply imitate the real world but creates meaning of reality by establishing space with various factors such as characters and background along with the story, under the premise of virtuality. The realization of In-game Animation is not limited to blindly portray a realistic image. In addition, the process of realization pursued by In-game Animation is an action to immerse in the game rather than a mere product of technological development.

Psychometric Analysis for Designing Elderly Customized Walking Assist Device (고령자 맞춤형 보행보조서비스 설계를 위한 심리측정 분석)

  • Kim, Junghwa;Jang, Jeong-ah;Choi, Keechoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • In accordance to rapid aging of population, the accidents of elderly pedestrian and pedestrian safety are becoming very important issues. In terms of smartphone technologies, older people are increasingly looking for useful and friendly ICT services that which can add a value on their silver life. This paper introduced a new IT-based service for elderly walking assist using a smart-phone accompanied by a wearable watch. We describe the functional requirements and a systems architecture model with an interface between a smart-phone and wearable watch. Moreover, this study attempted to verify what services are needed and to estimate elderly pedestrians' WTP (willingness to pay) for IT-based walking assistance device. A total of 189 elderly pedestrians were randomly surveyed through face-to-face interviews. The questionnaire consisted of 3 categories: (1) questions pertaining to socio-economic status, (2) 12 questions regarding walking attitudes, and (3) a question to measure WTP. With this gathered data, factor analysis and path model estimating were conducted. The results identified the elderly user requirements and the use-value of new innovative products for IT-based walking assistance services by two groups(latent elderly and elderly). The modeling result shows that elderly's service preference would increase the possibilities for the commercialization of IT-based walking device with improving their walking safety.

Development of A Haptic Interactive Virtual Exhibition Space (햅틱 상호작용을 제공하는 가상 전시공간 개발)

  • You, Yong-Hee;Cho, Yun-Hye;Choi, Geon-Suk;Sung, Mee-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.6
    • /
    • pp.412-416
    • /
    • 2007
  • In this paper, we present a haptic virtual exhibition space that allows users to interact with 3D graphic objects not only through the sense of sight but also through the sense of touch. The haptic virtual exhibition space offers users in different places some efficient ways to experience the exhibitions of a virtual musical museum using the basic human senses of perception, such as vision, audition, and touch. Depending on 3D graphic objects, we apply different properties to let those feel realistic. We also provide haptic device based navigation which prevents users from rushing between various interfaces: keyboard and mouse. The haptic virtual museum is based on Client-Server architecture and clients are represented in the 3D space in the form of avatars. In this paper, we mainly discuss the design of the haptic virtual exhibition space in detail and in the end, we provide performance analysis in comparison to other similar applications such as QTVR and VRML).

Difference of fMRI between the Tickling and Sensory Stimulation Using 3.0 Tesla MRI (3.0T 자기공명영상장치를 이용한 사람의 간지럼자극과 감각중추 자극의 활성화 차이)

  • Khang, Hyun-Soo;Lim, Ki-Seon;Han, Dong-Kyoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.286-294
    • /
    • 2010
  • This study was performed to identify the cerebral network associated with sensation through the tickling stimulation, which is distinctive from the rest of other networks processing normal stimulation and to investigate the difference of laughing mechanism which is closely related to tickling using functional MRI(fMRI). A 16 healthy volunteers (mean age: 28.9) on a 3.0T MR scanner during two sensation conditions. Counterbalanced stimulus were presented across the participants, and the stimulation was used block design. Acquired data was analyzed by the statistical parametric mapping (SPM 99). Subject and group analysis was performed. Individual analysis showed the activation of somatic sensation area in both tasks and the tickling sensation test showed more activated area in the Wernicke's area(BA40) compared to the normal sensation. The group analysis result shows that under normal stimulations, both sides of somatosensory cortices(BA 1,2 and 3) were activated and under tickling stimulation, not only the cortices but also those huge activation on thalamus, cingulate gyrus and insular lobe were detected. When the tickling was stopped, significant activations were shown in right cingulate gyrus, left MFG area and left insular lobe. A cerebral area responsible for recognizing tickling sensation was examined and the primitive stimulation such as tickling is much closely related to laugh, which is an important factor for various social activities.

One-key Keyboard: A Very Small QWERTY Keyboard Supporting Text Entry for Wearable Computing (원키 키보드: 웨어러블 컴퓨팅 환경에서 문자입력을 지원하는 초소형 QWERTY 키보드)

  • Lee, Woo-Hun;Sohn, Min-Jung
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Most of the commercialized wearable text input devices are wrist-worn keyboards that have adopted the minimization method of reducing keys. Generally, a drastic key reduction in order to achieve sufficient wearability increases KSPC(Keystrokes per Character), decreases text entry performance, and requires additional effort to learn a new typing method. We are faced with wearability-usability tradeoff problems in designing a good wearable keyboard. To address this problem, we introduced a new keyboard minimization method of reducing key pitch. From a series of empirical studies, we found the potential of a new method which has a keyboard with a 7mm key pitch, good wearability and social acceptance in terms of physical form factors, and allows users to type 15.0WPM in 3 session trials. However, participants point out that a lack of passive haptic feedback in keying action and visual feedback on users' input deteriorate the text entry performance. We have developed the One-key Keyboard that addresses this problem. The traditional desktop keyboard has one key per character, but the One-key Keyboard has only one key ($70mm{\times}35mm$) on which a 10*5 QWERTY key array is printed. The One-key Keyboard detects the position of the fingertip at the time of the keying event and figures out the character entered. We conducted a text entry performance test comprised of 5 sessions. The participants typed 18.9WPM with a 6.7% error rate over all sessions and achieved up to 24.5WPM. From the experiment's results, the One-key Keyboard was evaluated as a potential text input device for wearable computing, balancing wearability, social acceptance, input speed, and learnability.

  • PDF