• Title/Summary/Keyword: 초정밀 위치결정기구

Search Result 22, Processing Time 0.06 seconds

Development of Rotational Nanoactuator Based on Four-Bar Linkage (4절링크 기구기반의 회전형 초정밀위치결정기구의 개발)

  • Jeong, Young Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.361-367
    • /
    • 2014
  • Ultra-precision positioning plays a crucial role in emerging technologies such as electronics, bioengineering, optics, and various nanofabrication technologies. As a result, various nanopositioning methods have been presented. In particular, nanopositioning using a flexure mechanism and piezo-electric actuator is one of the most valuable methods because of its friction-free motion and subnanometer-scale motion resolution. In this study, a rotational nanoactuator based on a right-circular flexure mechanism and piezo-electric actuator was developed through a consideration of the kinematics and structural deformation. An experimental setup was constructed to verify the performance expectation. Consequently, it was demonstrated that the developed system had a maximum rotational angle of about 0.01 rad, as well as sufficient linearity with respect to the input voltage.

A Study on Design and Manufacture of an Inchworm Linear Motor System (인치웜 리니어 모터 시스템 설계 및 제작에 관한 연구)

  • Ye Sang Don;Jeong Jae Hoon;Min Byeong Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.174-181
    • /
    • 2004
  • Ultra precision positioning mechanism has widely been used on semiconductor manufacturing equipments, optical spectrum analyzer and cell manipulations. Ultra precision positioning mechanism is consisted of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design, analysis and manufacture all of the inchworm linear motor system, which is one of the equipments embodied in ultra precision positioning mechanism. Inchworm linear motor system is consisted of a controller system and an inchworm linear motor, and its driving form is similar to a motion of spanworm. A design and manufacture of inchworm linear motor, which is consisted of three PZT actuators, a rod, two columns and a guide plate, are performed. Minimizing the von-Mises stress of the hinge using Taguchi method and simulation by FEM software optimizes the structural design in a column of flexure hinge. The designed columns and guide plates are manufactured by a W-EDM and NC-milling. A controller system, which is an apparatus to drive inchworm linear motor, can easily adjust driving conditions by varying resonance frequency and input-output voltage of actuators and amplifiers. The performance of manufactured inchworm linear motor system is verified and valuated. In the future, inchworm linear motor system will be used to make a more precision positioning by reinforcing a sensor and feedback system.