• 제목/요약/키워드: 초정밀 연마

검색결과 51건 처리시간 0.03초

MR fluid를 이용한 Mica Glass Ceramics의 초정밀 연마 (Ultra-Precise Polishing of Mica Glass Ceramics Using MR Fluids and Nano Abrasives)

  • 백시영;송기혁;김기범;김병찬;강동성;홍광표
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.85-90
    • /
    • 2017
  • Mica-glass ceramics has features such as micro-sized crystals, high strength, chemical resistance, semitransparent optical properties, etc. Due to its superior material properties, mica glass ceramics have increasing applications in dental and medical components, insulation boards, chemical devices, etc. In many applications, especially for dental and medical components, ultra-precise polishing is required. However, it is known to be a very difficult-to-grind material because of its high hardness and brittle properties. Thus, in this study, a newly developed ultra-precise polishing method is applied to obtain nano-level surface roughness of the mica glass ceramics using magnetorheological (MR) fluids and nano abrasives. Nano-sized ceria particles were used for the polishing of the mica glass ceramics. A series of experiments were performed under various polishing conditions, and the results were analyzed. A very fine surface roughness of Ra=6.127 nm could be obtained.

CO2 레이저를 이용한 초정밀 광섬유 연마 레이저 기술 (Optical fiber polishing technique using a CO2 laser)

  • 최훈국;손익부;노영철;정덕;이만섭;이서영;이형종
    • 한국레이저가공학회지
    • /
    • 제16권2호
    • /
    • pp.12-15
    • /
    • 2013
  • In this paper, we controlled the edge angle of fiber by using $CO_2$ laser. In order to control the angle, tilting angle of fiber on stage and the number of scan repetition are adjusted, and laser power is fixed at 30 W in the experiment. In the polishing result, the edge angle of fiber can be changed from $4^{\circ}$ to $8^{\circ}$, as changing the tilting angle and the number of scan repetition. This $CO_2$ laser polishing can fabricate ball lenses with various curvatures and a sharp probe as well as the edge angled fiber.

  • PDF

비구면 가공을 위한 공구 경로 제어 알고리즘 (Tool Path Control Algorithm for Aspherical Surface Grinding)

  • 김형태;양해정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.100-103
    • /
    • 2005
  • In this study, tool path control algorithm for aspherical surface grinding was derived and discussed. The aspherical surface actually means contact points between lens and tool. Tool positions are generally defined at the center of a tool, so there is difference between tool path and lens surface. The path was obtained from contact angle and relative position from the contact point. The angle could be calculated after differentiating an aspheric equation and complex algebraic operations. The assumption of the control algorithm was that x moves by constant velocity while z velocity varies. X was normal to the radial direction of lens, but z was tangential. The z velocities and accelerations were determined from current error and next position in each step. In the experiment, accuracy of the control algorithm was checked on a micro-precision machine. The result showed that the control error tended to be diminished when the tool diameter increased, and the error was under sub-micro level.

  • PDF

레이저 플라즈마 기반의 생물의료용 연 X-선 현미경 설계 (Conceptual Design of Laser Plasma-based Soft X-ray Microscope system for Biomedical Application)

  • 김경우;윤권하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.690-693
    • /
    • 2003
  • Soft x-ray microscopy provides a unique set of capabilities in-between those of visible light and electron microscopy. It has long been recognized that nature provides a 'water window' spectral region between the K shell x-ray absorption edges of carbon (~290eV) and oxygen (~540eV), where organic materials show strong absorption and phase contrast, while water is relatively non-absorbing. This enables imaging of hydrated biological specimens that are several microns thick with high intrinsic contrast using x-rays with a wavelength of 2.3~4.4nm. Soft X-ray microscopy is therefore well suited to the study of specimens like single biological cells. The most direct advantage of X-ray microscope is their high spatial resolution when compared with visible light microscopes, combined with an ability to image hydrated specimens that are several microns with a minimum of preparation. Our study describes the conceptual design of soft x-ray microscope system based on a laser-based source for biomedical application with high resolution ($\leq$50nm) and short exposure time ($\leq$30sec).

  • PDF

자기연마를 이용한 STS304 파이프 내면의 초정밀 가공 (Super Precise Finishing of Internal-face in STS304 Pipe Using the Magnetic Abrasive Polishing)

  • 김희남;윤여권;심재환
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.30-35
    • /
    • 2002
  • The magnetic abrasive polishing is the useful method to finish using magnetic power of a magnet. It's not a long time this method was introduced to korea as one of precision finishing techniques. The magnetic abrasive polishing method is not so common for machine that it is not spreaded widely. The are rarely researcher in this field because of no-effectiveness of magnetic abrasive. The mechanism of this R&D is dealing with the dynamic state of magnet-abusive. This paper deals with mediocritizing magnetic polishing device into regular lathe and this experiment was conducted in order to get the best surface roughness at low cost. We need to continue the research on it. This paper contains the result of experiment to acquire the best surface roughness, not using the high-cost polishing material in processing. The average diameters of magnetic abrasive are the particles of 150$\mu\textrm{m}$, 250$\mu\textrm{m}$.

습식워터젯을 채용한 초정밀 절삭 가공시스템의 특허동향조사에 관한 연구 (Research for Patent Application Tendency in the Super Fine Machining System Using the Wet Waterjet)

  • 김성민;고준빈;박희상
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-12
    • /
    • 2009
  • Presently, the semiconductor industry has the chronic problem. In the semiconductor industry, it has the semiconductor wafer, a package, the optical filter cut by using the saw blade, the mold, a laser etc. The cutting technique has the difficulty due to the rising of the production cost by the wearing of mold, the poor quality problem due to generated heat at the moment of cutting procedure and curve cutting etc. The goal of this time of national research and development project is develop the apparatus for solving the problem that the existing cutting technique has. The technology is so called waterjet abrasive method. This technology will be mainly applied to cut a semiconductor package and a wafer. Two important things to be considered are ripple effect(in other words, the scale of a market) and simplicity of an application.

30 um pitch의 Probe Unit용 Slit Etching 공정 및 특성 연구

  • 김진혁;신광수;김선훈;김효진;고항주;한명수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.257-257
    • /
    • 2010
  • 디스플레이 산업의 발달로 화상 영상폰, 디지털 카메라, MP4, PMP, 네비게이션, LCD TV등의 가전 제품의 수요증가에 따라 이에 장착되는 LCD 패널의 생산력 향상과 원가 절감을 위한 검사 기술이 요구되고 있다. LCD 검사를 위한 Probe unit은 미세전기기계시스템(MEMS) 공정을 이용하여 제작된다. LCD 검사용 Probe unit는 LCD 가장자리 부분에 전기적 신호(영상신호, 등 기신호, 색상신호)가 인가되도록 하는 수 십 내지 수 백개의 접속 단자가 고밀도로 배치되는데, 이러한 LCD는 제품에 장착되기 전에 시험신호를 인가하여 화면의 불량여부를 검사하기 위한 점등용 부품으로 50 um 이하의 Pin간 거리를 유지하면서 정확한 Pin Alignment를 요구하는 초정밀 부품이다. 본 연구에서는 반도체용 Si wafer에 마스크 공정 및 slit etching 공정을 적용하여 목표인 30 um pitch의 Probe unit을 개발하기 위해 Deep Si Etching(DRIE) 장비를 이용하여 식각 공정에 따른 특성을 평가하였다. 마스크 공정은 500 um 두께의 양면 연마된 반도체용 Si wafer를 이용하였으며, thick PR을 사용하여 마스킹하여 식각공정을 수행하였다. Si 깊은 식각은 $SF_6$ 가스와 Passivation용으로 $C_4F_8$ 가스를 교대로 사용하여 수직방향으로 깊은 식각이 이루어지는 원리이다. SEM 측정 결과 30 um pitch의 공정 목표에 도달하였으며, 식각공정 결과 식각율 6.2 um/min, profile angle $89.1^{\circ}$로 측정되었다. 또한 상부 에칭공정과 이면 에칭공정에서 폭과 wall의 간격이 동일하였으며, 완전히 관통된 양면식각이 이루어졌음을 확인하였다. 또한 실제 사용되는 probe unit의 조립에 적합한 slit 공정을 위한 에칭특성을 조사하였다.

  • PDF

MR fluid를 이용한 알루미늄 표면의 초정밀 연마 방법 (A Study on the Ultra Precision Polishing Method of Aluminum Surface Using MR Fluids)

  • 임동욱;김병찬;홍광표;조명우
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.20-24
    • /
    • 2017
  • Recent industrial developments are constantly advancing, and rapid technological development is demanding high technology level in related fields. The need for polishing is increasing even more to improve quality. In order to improve the surface quality, the final finishing process or polishing process is a very important part. Research on super precise polishing method using MR fluid is actively being carried out in domestic and foreign countries. Fine magnetic abrasive grains are aligned in the direction of a magnetic force line formed by a magnetic field and serve as a brush to polish a metal surface. This method has the advantage that the shape of the tool is not fixed and is not affected by the shape of the workpiece or the machining area. We will design the electromagnets for the MR polish polishing system and apply the magnetic field analysis using the magnetic field analysis program (ANSYS). The data obtained through this process suggests an efficient method to increase the magnetic flux density important for polishing. We will investigate the influence of the Al6061-T6 specimen on the surface of the MR polishing machine based on the optimized design.

MR Fluid Polishing을 이용한 Co-Cr-Mo alloy의 초정밀 연마 방법 (A Study on The Ultra-precision Polishing Method of Co-Cr-Mo alloy Using MR Fluid Polishing)

  • 신봉철;김병찬;송기혁;조명우
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.8-12
    • /
    • 2017
  • In general, metallic bio-materials is more widely used in solid tissue like bone or tooth than flexible tissue such as skin or muscle. Especially, Cobalt Chrome Molybdenum(Co-Cr-Mo), which is used in tooth surgery, has a great corrosion resistance. Because this bio-material is non-toxic in human body, and has a bio-compatibility that the vital reaction is not occurred with tissue in body. However the chemical reaction is occurred by fatal matter that deteriorate the property of material surface in conventional polishing, and it can affect to fatal disease in human body or decrease the material properties such as hardness, yield strength or bio-compatibility. This surface in poor condition can cause development of corrosion or bacteria. In this study, MR fluid polishing is used to minimize the scratch, pit or surface flaws generated in conventional polishing. Surface roughness is measured according to the polishing condition to obtain fine surface condition.

저산란 반사경을 이용한 링레이저 자이로의 주파수 잠긴 개선 (Lock-in frequency improvement of ring laser gyro using a low - scattering mirror)

  • 조민식;심규민;권용율;정태호;오문수;이수상;조현주;손승현;문건;이재철
    • 한국광학회지
    • /
    • 제13권4호
    • /
    • pp.336-339
    • /
    • 2002
  • 링레이저 자이로의 주파수 잠김을 개선하기 위하여, 링레이저 공진기에 저산란 반사경을 적용하는 연구가 수행되었다. 초정밀 연마기술을 통해 표면 거칠기 1Å rms 이하의 반사경 기판을 가공하였으며, 가공된 기판에 이온빔 스퍼터링 코팅방식을 이용하여 산란율 300ppm 이하의 반사경을 제작하였다. 제작된 저산란 반사경을 링레이저 자이로에 적용한 결과, 자이로의 잠김 주파수를 약 0.1 deg/sec 이하로 개선할 수 있었다.