• Title/Summary/Keyword: 초정밀

Search Result 1,188, Processing Time 0.028 seconds

Properties of Friction Coefficient with Re-Ir Coating Surface (Re-Ir 코팅에 따른 표면 마찰 계수 특성 연구)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.676-677
    • /
    • 2011
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, adrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

  • PDF

The property of WC(Co 0.5%) Ultra precision turning for Glass Lens molding (Glass Lens 성형용 초경합금(Co 0.5%)의 초정밀 절삭특성)

  • Kim, Min-Jae;Lee, Jun-Key;Kim, Tae-Kyoung;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.41-41
    • /
    • 2010
  • In this research, to study tungsten carbide alloy(Co 0.5%) ultra precision turning possibility that is used Glass Molding Press(GMP) using conventional (Rake angle $-25^{\circ}$) single crystal diamond bite observed machining surface condition, surface roughness($R_a$), diamond bite cutting edge after tungsten carbide alloy ultra precision turning. Suggested and designed optimum chamfer bite shape to suggest ultra precision optimum bite using Finite Element Analysis(FEM). After machining tungsten carbide alloy ultra precision turning using optimum chamfer bite and comparing with conventional bite machine result and studied optimum chamfer bite design inspection and also tungsten carbide ultra precision turning possibility for high temperature compression glass lens molding.

  • PDF

The Study on the Wafer Surface and Pad Characteristic for Optimal Condition in Wafer Final Polishing (최적조건 선정을 위한 Pad 특성과 Wafer Final Polishing의 가공표면에 관한 연구)

  • Won, Jong-Koo;Lee, Eun-Sang;Lee, Sang-Gyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study will report the characteristic of wafer according to processing time, machining speed and pressure which have major influence on the abrasion of Si wafer polishing. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The characteristic of wafer surface according to processing condition is selected to use a result data that measure a pressure, machining speed, and the processing time. This result is appeared by the characteristic of wafer surface in machining condition. Through that, the study cans evaluation a wafer characteristic in variable machining condition. It is important to obtain optimal condition. Thus the optimum condition selection of ultra precision Si wafer polishing using load cell and infrared temperature sensor. To evaluate each machining factor, use a data through each sensor. That evaluation of abrasion according to variety condition is selected to use a result data that measure a pressure, machining speed, and the processing time. And optimum condition is selected by this result.

Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry (마이크로 무아레 간섭계를 이용한 초정밀 변형 측정)

  • Joo, Jin-Won;Kim, Han-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.

A Study on the minimizing of cutting depth in sub-micro machining (초정밀 절삭에서의 가공깊이 최소화에 관한연구)

  • 손성민;허성우;안중환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF

Development of Levitation Control for High Accuracy Magnetic Levitation Transport System (초정밀 자기부상 이송장치의 부상제어기 개발)

  • Ha, Chang-Wan;Kim, Chang-Hyun;Lim, Jaewon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.557-561
    • /
    • 2016
  • Recently, in the manufacturing process of flat panel displays, mass production methods of inline system has been emerged. In particular the next generation OLED display manufacturing process, horizontal inline evaporation process has been tried. It is important for the success of OLED inline evaporation process to develop a magnetic levitation transport system capable of transferring a carrier equipped with a mother glass with high accuracy without any physical contact along the rail under vacuum condition. In the case of existing wheel-based transfer system, it is not suitable for OLED evaporation process requiring high cleanliness. On the other hand, the magnetic levitation transport system has an advantage that it does not generate any dust and it is possible to achieve high-precision control because there are not non-linear factors such as friction force. In this paper, we introduce the high-precision magnetic levitation transport system, which is currently under development, for OLED evaporation process.

Structure analysis of ultra precision nano-scale machine for mold processing (금형가공을 위한 초정밀 나노가공기의 구조해석)

  • Baek, Seung-Yub;Kim, Seon-Yong
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • As various manufacturing technology of optical glass is developed, the aspheric lenses are supplied to many fields. Electronic or measuring instruments equipped with aspheric lens have recently been used since aspheric lens is more effective than spheric one. However, it is still difficult manufacture glass lens because of high cost and the short life of core. The demands of the aspheric glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. For the mass production of aspheric lens, specific molds with precisely machined cores should be prepared. In order to obtain competitiveness in the field of industrial manufacturing, a reduction in the development period for the batch machining of products is required. It is essential to analyze the stress distribution and deformations of machining system which is used for manufacturing the aspheric lens using FEM software ANSYS. Finite element simulations have been performed in order to study the influence of machining system which is developed in this study on structures. It is very important to understand the structural behavior of machining system. This paper investigated the static analysis and dynamic analysis of machining system for aspheric lens to predict the damage due to loading.

  • PDF

Injection Molding Technology for Thin Wall Plastic Part - II. Side Gate Removal Technology Using Cold Press Cutting Process (초정밀 박육 플라스틱 제품 성형기술- II. 냉간 절단 공정 활용 사이드 게이트 제거기술)

  • Heo, Young-Moo;Shin, Kwang-Ho;Choi, Bok-Seok;Kwon, Oh-Keun
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • In the semiconductor industry the memory and chip were developed to high density memory and high performance chip, so circuit design was also high integrated and the test bed was needed to be thin and fine pitch socket. LGA(Land Grid Array) IC socket with thin wall thickness was designed to satisfy this requirement. The LGA IC socket plastic part was manufacture by injection molding process, it was needed accuracy, stiffness and suit resin with high flowability. After injection molding process the side gates were needed to remove for further assembly process. ln this study, the cold press cutting process was applied to remove the gates. For design of punch and die, the cold press cutting analysis was implemented by$DEFORM-2D^{TM}$ ln consideration of the simulation results, an adequate punch and die was designed and made for the cutting unit. In order to verify the performance of cutting process, the roughness of cutting section of the part was measured and was satisfied in requirement.

Optical fiber polishing technique using a CO2 laser (CO2 레이저를 이용한 초정밀 광섬유 연마 레이저 기술)

  • Choi, Hun-Kook;Sohn, Ik-Bu;Noh, Young-Chul;Jung, Deok;Lee, Man-Seop;Lee, Seo-Young;Lee, Hyung-Jong
    • Laser Solutions
    • /
    • v.16 no.2
    • /
    • pp.12-15
    • /
    • 2013
  • In this paper, we controlled the edge angle of fiber by using $CO_2$ laser. In order to control the angle, tilting angle of fiber on stage and the number of scan repetition are adjusted, and laser power is fixed at 30 W in the experiment. In the polishing result, the edge angle of fiber can be changed from $4^{\circ}$ to $8^{\circ}$, as changing the tilting angle and the number of scan repetition. This $CO_2$ laser polishing can fabricate ball lenses with various curvatures and a sharp probe as well as the edge angled fiber.

  • PDF

Current Status and Prospect of Nanopowder Technology (나노분말 기술의 현황 및 전망)

  • Park Jong-Ku
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2005.05a
    • /
    • pp.27-39
    • /
    • 2005
  • 나노기술은 21세기 초반 첨단산업을 이끌어갈 핵심기술 중의 하나로 여러 나라들이 국가적인 차원에서 전략적으로 개발하고 있다 나노기술은 초정밀 가공기술, 원자 혹은 분자 단위의 조립(조합)기술, 소재공정기술 등의 기술 분야를 포함하며 나노스케일 영역에서 나노소재를 이용(제조 및 가공)하여 새로운 응용분야를 창출해 내거나 기존 산업을 더욱 고도화하는데 기여하는 기술이다. 나노소재는 금속, 세라믹, 고분자, 생체물질 등의 특정 물질 영역에 국한되지 않고 다양한 형태, 다양한 물성을 갖고 있으며 나노기술 구현에 있어서 직접적인 대상 혹은 중간매체에 해당한다. 따라서 나노소재 기술은 대단히 광범위한 영역을 포함하는 나노기술의 바탕을 이루는 기반기술 또는 원천기술이라고 할 수 있다. 여러 형태의 나노소재 중에서 가장 저차원(0차원)의 물질에 해당하는 나노분말은 기술적으로 가장 실용화에 근접해 있으며 이미 많은 상용화 사례들이 나타나고 있다. 나노분말 기술은 기술 성숙도 측면에서뿐만 아니라 확장성(유용성), 신규성(혁신성) 측면에서 대단한 가능성을 갖고 있기 때문에 향후 대단히 빠른 속도로 시장이 확대될 전망이다. 본 발표에서는 나노분말 기술의 개발 현황 및 전망에 대하여 언급하고자 한다.

  • PDF