• Title/Summary/Keyword: 초정밀

Search Result 1,188, Processing Time 0.03 seconds

A Study on Endurance Estimation of 3D Sprag Type Ultra Precision Reverse-Locking Clutches under Contact Condition (접촉상태에 있는 의 초정밀 역전방지클러치의 3D SPRAG TYPE 내구성 평가에 관한 연구)

  • 이상범;서정세;이석순;이태선;최중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1429-1433
    • /
    • 2004
  • Recently, a dangerous event occurred at the field industry and mechanical system. At developed by SUNGGOK corp. a R-L clutches of a small and high capacity serves safety device from a variety environment of mechanical system, it permits transmission of driving torque form input to output shaft in both directions of rotation, but restrains any feedback torque of the driven load from rotating the output shaft in either direction. This study was carried out to demonstrate through finite element methode and durability estimation for safety of the R-L clutches without sliding during the engagement process. As results, we organized about endurance test methode when applied rated torque.

  • PDF

Accurate Positioning of Piezoelectric Actuator for Fast Tool Servo in Ultraprecision Machine (초정밀 가공기용 FTS를 위한 압전 액츄에이터의 위치제어)

  • 김호상;정병철;송승훈;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.446-449
    • /
    • 1995
  • In this paper, the accurate end position control method of ultraprecision machine tool post using piezoelectric material as an micro positonong devics is presented. This method employs the classical PID feedback and uses an additional notch filter which eliminates the resonance characteristics of controlled plant. And the simple predictor is added to make use of the future value of desired input for better tracking performance. To show the feasibilty of proposed method, the PC-based experimental apparacy can be obtained. Using method, Al specimen of diameter 100mm was cut under practical machining condition to test the practicability of proposed method.

  • PDF

Characterization of ultra Precision Grinding Plate for GMR Head Manufacturing by Measuring Frictional Force (마찰력 측정을 통한 GMR 헤드 제작용 초정밀 연마판의 특성화)

  • 노병국;김기대
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.78-83
    • /
    • 2003
  • Characterization of an ultra precision grinding plate for GMR head manufacturing is performed by measuring frictional forces between the grinding plate and the advanced ceramic Two kinds of methods of producing the precision grinding plates are presented: texturing and micro-channeling. Texturing is effective in terms of production time but micro-channeling excels in quality control. It is found that the frictional coefficient of a precision grinding plate decreases as the impregnation of diamond grain onto the precision-grinding plate progresses, and remains unchanged once the impregnation process is successfully completed, even after 100 revolutions of the precision-grinding plate against the advanced ceramic under 40 N of normal force. Therefore, the measurement of the frictional coefficient can replace costly and time-consuming process of estimating the level of impregnation of diamond grain on the precision-grinding plate, which has been performed by using scanning electron microscope, and be employed as an index to determine the level of impregnation of diamond grain.

A Study on the Critical Depth of Cut in Ultra-precision Machining (초정밀 절삭에 있어서 임계절삭깊이에 대한 연구)

  • Kim, Kug-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.126-133
    • /
    • 2002
  • The cutting thickness of ultra-precision machining is generally very small, only a few micrometer or even down to the order of a few nanometer. In such case, a basic understanding of the mechanism on the micro-machining process is is necessary to produce a high quality surface. When machining at very small depths of cut, metal flow near a rounded tool edge become important. In this paper a finite element analysis is presented to calculate the stagnation point on the tool edge or critical depth of cut below which no cutting occurs. From the simulation, the effects of the cutting speed on the critical depths of cut were calculated and discussed. Also the transition of the stagnation point according to the increase of the depths of cut was observed.

Machining Characteristics of Micro-parts using the Ultra-precision Machine Tools (초정밀 공작기계를 이용한 미소부품의 가공특성)

  • 이재종;이응숙;제태진;이선우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.858-861
    • /
    • 2001
  • As the application fields of micro parts that are micro endo-scope, PDA, and tele-communication had been extended, there are required the micro machine tools and MEMS in order to machining for those parts. In order to machining of the micro parts, the micro machining center is very effective. The micro machining center had some advantages that are lower cost, higher accuracy, and lower required powers than existing machine tools for machining of micro parts. In this study, in order to analyze the machining characteristics and its application possibility of the developing micro machining center with 60,000rpm rotations, 0.1$\mu\textrm{m}$ resolutions, and 80 50 50mm sliding unit, the machining experiment had been executed. In this experimental machining, 0.1~ 0.5mm endmills are used to machining the micro cap and tele-communication's parts. In the future, experimental results will be adapted to the micro-machining center.

  • PDF

A Study on the Surface Roughness in Ultra-Precision Cutting of Electroless Nickel (무전해 니켈의 초정밀 절삭에 의한 표면거칠기 연구)

  • 권우순;김동현;난바의치
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.538-541
    • /
    • 2003
  • Ultra-precision machining was carried out on a electroless nickel materials using single crystal diamond tools. The effects of the cutting velocity, the tool length, the tool nose radius, the feed rate and depth of cut on the surface roughness were studied. In this paper, the cutting condition for getting nano order smooth surface of electroless nickel have been examined experimentally by the ultra-precision machine and single crystal diamond tools. And also. the surface roughness was measured by the three dimension

  • PDF

Extraction of Factors Effecting Surface Roughness Using the System of Experiments in the Ultra-precision Mirror Surface Finishing (실험 계획법을 이용한 초정밀 경면 연마 가공에서 표면 거칠기에 영향을 미치는 인자의 검출)

  • 배명일;김홍배;김기수;남궁석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 1998
  • In this study, it is experimented to find factors effecting surface roughness using the system of experiments. in the mirror surface finishing system. (1) The film feed and oscillation frequency in $40{\mu}m$ abrasive film, grinding speed in $30{\mu}m$, and machining time in $15{\mu}m$15 are the main factors effecting the surface roughness. (2) Applying the optimal finishing condition to $40{\mu}m$, $30{\mu}m$, $15{\mu}m$ abrasive finishing film in sequence, it is possible to obtian about Ra 10 nm surface roughness on SM45C workpiece. (3) Application of the system of experments to the micro abrasive grain film finishing was very effective method in the extraction of main factor and optimal condition.

  • PDF

Development of a 3-axis fine positioning stage : Part 1. Design and Fabrication (초정밀 3축 이송 스테이지의 개발 : 1. 설계 및 제작)

  • Kang, Joong-Ok;Seo, Mun-Hoon;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.648-651
    • /
    • 2003
  • This paper presents a 3-axis fine positioning stage. All the procedure concerning the design and fabrication of the stae are described. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. A special flexure hinge is adopted to be able to actuate the single stage in three axes at the same time. A ball contact mechanism is introduced into the piezoelectric actuator to avoid the cross talk among the axes. The final design is obtained with the theoretical analysis on the stage. An actual fine stage is developed and the design specifications are verified through an experiment.

  • PDF

Tool Locus Analysis of Ultra-precision Inclined Grinding (초정밀 경사축 연삭가공에서의 공구 궤적 해석)

  • Hwang, Yeon;Park, Soon-Sub;Lee, Ki-Yong;Won, Jong-Ho;Kim, Hyun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.35-40
    • /
    • 2009
  • This paper presents the geometrical analysis of an inclined ultra-precision grinding technology using simulations about grinding point locus for micro lens manufacturing. Simulation results show the relationship between radius ratios ($R_1/R_2$) and wheel center locus. Furthermore, the critical grinding wheel radius ($R_1$) can be calculated from work-piece radius ($R_2$) and inclined angle ($\theta=-45^{\circ}$). These achievements could be applied to calculate CNC data in ultra-precision grinding and give insight for wheel wear and compensation grinding.

Development of Ultra-Precision Machining Technology for V-Shape Micropatterns with 32" Large Surface Area (32" 대면적 V-형상 미세 패턴을 위한 초정밀 가공기술 개발)

  • Lee, Sung-Gun;Kim, Hyun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.315-322
    • /
    • 2011
  • High-accuracy micropatterns such as V-shaped microgrooves are increasingly in demand for various engineering areas. And the technical trend goes for large surface areas in precision machining technology. So micropatterns with large surface areas are expected to play an increasingly important role in today's manufacturing technology In this study, we focused on developing machining technologies. First, a machine vision system for precise tool setting is developed. Second, an on-machine measurement (OMM) system for large-area measurement is implemented. And also software for tool path generation and simulation is developed. With these technologies we fabricated large-surface micropatterns in an electroless nickel-plated workpiece with single-crystal diamond tools and a 32-in, $675mm{\times}450mm$ mold with tens of V-and pyramid-shaped micropatterns.