• Title/Summary/Keyword: 초정밀

Search Result 1,188, Processing Time 0.025 seconds

Analysis of Environmental Factors Affecting the Machining Accuracy (가공정밀도에 영향을 미치는 환경요소 분석)

  • Kim, Young Bok;Lee, Wee Sam;Park, June;Hwang, Yeon;Lee, June Key
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

대한민국 반세기 연구개발정책의 변천

  • 이공래
    • Journal of Technology Innovation
    • /
    • v.31 no.1
    • /
    • pp.1-28
    • /
    • 2023
  • 본 챕터는 과거 50년 연구개발정책의 역사를 돌이켜보면서 한국 산업과 경제의 성장과정에서 연구개발정책이 어떤 역할을 수행했는가를 조명한다. 1960년 초 경제개발 5개년계획을 추진하기 시작하던 때부터 1970년 대 말까지 연구기반 구축기, 1981년부터 2000년까지 연구역량 축적기, 2001년부터 2020년 현재까지 연구개발 도약기 등 3단계로 나눠서 살펴본다. 연구기반 구축기간 중에는 연구개발 투자의 증가와 함께 본격적인 연구와 우수 연구인력을 양성하기 위하여 여러 국책연구기관을 설립하였으며 연구 단지를 조성하는 등 연구기반을 구축하는 정책을 추진하였다. 다양한 분야의 전문 연구기관의 설립 필요성이 제기되자 주요 분야 연구조직을 KIST 부설 형태로 발족한 후 독립 연구기관으로 분리하는 것이 주요 정책이었다. 연구역량 축적기에는 정부가 연구개발 사업을 기획하여 추진하였고 1990년대에 이르러서는 대학의 연구 잠재력을 조직화함으로써 연구역량을 축적하였다. 수출 고도화와 수출시장에서의 경쟁력을 향상해야 하는 기업들의 절박한 기술혁신의 필요성에 기인하여 기업의 연구개발 투자가 급속도로 증가했다. 2000년대에 이르러서는 우리나라 연구개발투자가 절대규모에서도 세계 5위국으로 부상했고, GDP대비 연구개발투자 비중에서는 세계 최고 수준에 도달했다. 이렇듯 연구기반 구축기, 연구역량 축적기, 연구개발 도약기를 거치면서 우리나라는 매 20여년의 주기로 연구개발 시스템을 시대 상황에 맞도록 정책을 혁신하여 추진함으로써 오늘에 이르렀다. 과학기술의 혁신은 산업과 기업의 성장에 결정적인 기여를 하였다. 정부의 도전적인 연구개발 투자는 정밀한 정책 기획과 추진이 병행되면서 그 효과가 발휘되었고 산업과 기업의 성장을 견인할 수 있었다.

Implementation of a Kinematic Network-Based Single-Frequency GPS Measurement Model and Its Simulation Tests for Precise Positioning and Attitude Determination of Surveying Vessel (동적네트워크 기반 단일주파수 GPS 관측데이터 모델링을 통한 측량선의 정밀측위 및 자세각결정 알고리즘 구현과 수치실험에 의한 성능분석)

  • Hungkyu, Lee;Siwan, Lyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • In order to support the development of a cost-effective river bathymetric system, this research has focused on modeling GPS observables, which are obtained by array of five single-frequency receivers (i.e., two references and three rovers) to estimate the high accurate kinematic position, and the surveying vessel altitude. Also, by applying all GPS measurements as multiple-baselines with constraining rover baselines, we derived the socalled ‘kinematic network model.’ From the model, the integer-constrained least-squares (LS) for position estimation and the implicit LS for attitude determination were implemented, while a series of simulation tests with respect to the baseline lengths around 2km performed to demonstrate its accuracy analysis. The on-the-fly (OTF) ambiguity resolution tests revealed that ninety-nine percents of time-to-fix-first ambiguity (TTFF) can be decided in less than two seconds, when the positioning accuracy of ambiguity-fixed solutions was assessed as the greater than or equal to one and two centimeters in horizontal and vertical, respectively. Comparing to the GPS-derived attitudes, the achievable accuracy gradually descended in sequence of yaw, pitch and roll due to the antenna geometric configuration. Furthermore, the RMSE values for the baseline lengths of three to six meters were within ±1′for yaw, and less than ±10′and ±20′for pitch and roll, respectively, but those of between six to fifteen meters were less than ±1′for yaw, ±5′for pitch, and ±10′for roll.

Effect of $N_2$-back-flushing in Multi Channels Ceramic Microfiltration System for Paper Wastewater Treatment (제지폐수 처리를 위한 다채널 세라믹 정밀여과 시스템에서 질소 역세척 효과)

  • Park Jin-Yong;Choi Sung-Jin;Park Bo-Reum
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • The ceramic microfiltration system with periodic $N_2$-back-flushing was operated for treating paper wastewater discharged from a company making toilet papers by recycling milk or juice cartons. Two kinds of alumina membranes with 7 channels used here for recycling paper wastewater. The optimal filtration time interval for HC04 membrane with $0.4{\mu}m$ pore size was lower value of 4 min than 16 min for HC10 with $1.0{\mu}m$ pore size at fixed back-flushing time 40 sec, trans-membrane pressure $1.0kg_f/cm^2$ and back-flushing pressure $5.0kg_f/cm^2$. From the results of TMP effect at fixed filtration time interval and back-flushing time, the lower TMP was better on membrane fouling because high TMP could make easily membrane cake and fouling inside membrane structure. However, we could acquire the highest volume of total permeate at the highest TMP for the reason that TMP was driving force in our filtration system to treat paper wastewater. Then the permeate water of low turbidity was acquired in our microfiltration system using multi channels ceramic membranes, and the treated water could be reused in paper process.

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

Alteration Analysis of Normal Human Brain Metabolites with Variation of SENSE and NEX in 3T Multi Voxel Spectroscopy (3T Multi Voxel Spectroscopy에서 SENSE와 NEX 변화에 따른 정상인 뇌 대사물질 변화 분석)

  • Seong, Yeol-Hun;Rhim, Jae-Dong;Lee, Jae-Hyun;Cho, Sung-Bong;Woo, Dong-Chul;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.256-262
    • /
    • 2008
  • To evaluate the metabolic changes in normal adult brains due to alterations SENSE and NEX (number of excitation) by multi voxel MR Spectroscopy at 3.0 Tesla. The study group was composed of normal volunteers (5 men and 8 women) with a mean ($\pm$ standard deviation) age of 41 (${\pm}11.65$). Their ages ranged from 28 to 61 years. MR Spectroscopy was performed with a 3.0T Achieva Release Version 2.0 (Philips Medical System-Netherlands). The 8 channel head coil was employed for MRS acquisition. The 13 volunteers underwent multi voxel spectroscopy (MVS) and single voxel spectroscopy (SVS) on the thalamus area with normally gray matter. Spectral parameters were as follows: 15 mm of thickness; 230 mm of FOV (field of view); 2000 msecs of repetition time (TR); 288 msecs of echo time (TE); $110{\times}110$ mm of VOI (view of interest); $15{\times}15{\times}15$ mm of voxel size. Multi voxel spectral parameters were made using specially in alteration of SENSE factor (1~3) and 1~2 of NEX. All MRS data were processed by the jMRUI 3.0 Version. There was no significant difference in NAA/Cr and Cho/Cr ratio between MVS and SVS likewise the previous results by Ross and coworkers in 1994. In addition, despite the alterations of SENSE factor and NEX in MVS, the metabolite ratios were not changed (F-value : 1.37, D.F : 3, P-value : 0.262). However, line-width of NAA peak in MVS was 3 times bigger than that in SVS. In the present study, we demonstrated that the alterations of SENSE factor and NEX were not critically affective to the result of metabolic ratios in the normal brain tissue.

  • PDF

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics (연동펌프를 이용한 비료염 공급 관비재배기술 연구)

  • Kim, D.E.;Lee, G.I.;Kim, H.H.;Woo, Y.H.;Lee, W.Y.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.

Flexible Optical Waveguide Film with Embedded Mirrors for Short-distance Optical Interconnection (근거리 광연결용 미러 내장형 연성 광도파로 필름)

  • An, Jong Bae;Lee, Woo-Jin;Hwang, Sung Hwan;Kim, Gye Won;Kim, Myoung Jin;Jung, Eun Joo;Rho, Byung Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • In the paper, we fabricated a Ni master with $45^{\circ}$-mirror structures for flexible waveguide fabrication. The flexible waveguide films with embedded $45^{\circ}$-angled mirrors at the waveguide ends were successfully fabricated using a UV-imprint process. Next, in order to enhance the reflectivity of the mirrors, Ni(3 nm)-Au(200 nm) bilayers were evaporated on the $45^{\circ}$-angled facets through a locally opened thin mask using an electron beam evaporator. We measured propagation loss, bending loss, mirror loss and bending reliability of the fabricated waveguide.

Systematization Design Technique for Linear Actutor by using similarity theory (유사이론을 적용한 리니어 액츄에이터의 계열화 설계기법)

  • 조경재;차인수;이권현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.442-448
    • /
    • 1999
  • We introduce the systematization design method using similarity theory which is profitable in the c compatability and standardization of the developed products and the reduction of construction time and price to d develop and design a machine equipment. Systematization design method is to select the standard model for d designing and developing from the large machinery to the super precision one and then to induce the c characteristic of machines step by step in advance in case of miniaturizing and making largelongleftarrowscale. With this m method, we extract the peculiar characteristics through the close analysis on the physical and ttx:hnical part a and predict the characteristic experiment for the magnitude we desire by an머ogical mathematical analysis. At l last, we will get the design sample the users demand with the verification of the data on optimum design p previously. In this paper, we could predict the characteristic of the product the users rC'Quire in advance with the d design method applying similarity theor${\gamma}$ and suggested the design method which could meet the various r requirements the users want. Also, it is shown that the standardization design by the similarity theory is a available as comparing the characteristic values expc'Cted through the experiment of the actual actuator with t the theoretical character data of similarity theoη after selecting the linear actuator as a model.

  • PDF

Development of Biomass Evaluation Model of Winter Crop Using RGB Imagery Based on Unmanned Aerial Vehicle (무인기 기반 RGB 영상을 이용한 동계작물 바이오매스 평가 모델 개발)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.709-720
    • /
    • 2018
  • In order to optimize the evaluation of biomass in crop monitoring, accurate and timely data of the crop-field are required. Evaluating above-ground biomass helps to monitor crop vitality and to predict yield. Unmanned Aerial Vehicle (UAV) imagery are being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study reports on the development of remote sensing techniques for evaluating the biomass of winter crop. Specific objective was to develop statistical models for estimating the dry weight of barley and wheat using a Excess Green index ($E{\times}G$) based Vegetation Fraction (VF) and a Crop Surface Model (CSM) based Plant Height (PH) value. As a result, the multiple linear regression equations consisting of three independent variables (VF, PH, and $VF{\times}PH$) and above-ground dry weight provided good fits with coefficients of determination ($R^2$) ranging from 0.86 to 0.99 with 5 cultivars. In the case of the barley, the coefficient of determination was 0.91 and the root mean squared error of measurement was $102.09g/m^2$. And for the wheat, the coefficient of determination was 0.90 and the root mean squared error of measurement was $110.87g/m^2$. Therefore, it will be possible to evaluate the biomass of winter crop through the UAV image for the crop growth monitoring.