• 제목/요약/키워드: 초임계 사이클

검색결과 34건 처리시간 0.02초

$CO_2$ 시스템에서 내부열교환기 최적설계에 대한 실험적 연구 (Experimental Study on Optimal Design of Internal Heat Exchanger for $CO_2$ System)

  • 김대훈;이상재;최준영;이재헌;권영철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2085-2090
    • /
    • 2007
  • This paper describes the possible way to improve the capacity, the efficiency and the pressure drop of $CO_2$ system. It is considered the use of an internal heat exchanger (IHX) to improve the performance of the $CO_2$ system. Experiment was performed by changing a tube shape, a tube number and a tube length of IHX to investigate the performance of IHX for $CO_2$ system. The focus of the present study is to obtain the concept on IHX optimal design. Experimental results show that design parameters are closely related with the capacity and the pressure drop of $CO_2$ system. In the transcritical $CO_2$ cycle, the system performance is very sensitive to the IHX design. System performance on operation condition and shape of IHX is also introduced.

  • PDF

냉매충전량이 초임계 이산화탄소 사이클의 냉방성능에 미치는 영향에 대한 연구 (Effects of Refrigerant Charge Amount on the Cooling Performance of a Transcritical $CO_{2}$ Cycle)

  • 조홍현;류창기;김용찬;심윤희
    • 설비공학논문집
    • /
    • 제17권5호
    • /
    • pp.410-417
    • /
    • 2005
  • The cooling performance of a transcritical $CO_{2}$ cycle varies significantly with a variation of refrigerant charge amount. In this study, the performance of the $CO_{2}$ system was measured and analyzed by varying refrigerant charge amount at a standard test condition. Besides, the losses of the major components in the $CO_{2}$ system were estimated by evaluating entropy generation with refrigerant charge amount. The losses in the expansion device and the gascooler show the major portion of the total loss. For undercharging conditions, the expansion loss dominates the overall system performance, while the gascooler loss increases significantly with an increase of refrigerant charge amount.

이산화탄소 사이클에서 팽창장치의 영향에 관한 수치적 연구 (Numerical Study for the Effect of Expansion Device on the Performance of the $CO_2$ Cycle)

  • 김무근;김욱중;김유진
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.84-90
    • /
    • 2004
  • In order to evaluate the performance of carbon dioxide cycle, a simulation model was developed to predict the steady state performance of $CO_2$ transcritical cycle. The expansion process is treated as an isenthalpic throttling process or isentropic expansion process. The mathematical model is based entirely on the basic energy conservation law and thermodynamic and transport properties of $CO_2$. A Parametric study has been conducted in order to investigate the effect of isentropic efficiency of expansion turbine and various operating conditions on the cycle performance. An optimal heat rejection pressure existed for the given evaporating temperature and outlet temperature of gas cooler.

$CO_2$ 자동차 에어컨 시스템의 최적 고압 설정 알고리즘 개발에 관한 연구 (Development of Optimum High Pressure Algorithm for a Transcritical $CO_2$ Mobile Air-Conditioning System)

  • 이종붕;이준경
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.159-165
    • /
    • 2008
  • This paper deals with the optimum high pressure control algorithm for a transcritical $CO_2$ mobile air-conditioning system with belt-driven compressor to achieve the maximum COP. The experiments were performed to find out the maximum COP conditions with various operating conditions. The experimental results showed that the COP was increased and then decreased with increase of the refrigerant high pressure for the system. Therefore the value of high pressure which has maximum COP could be selected. Furthermore, the strong (linear) relation between the optimum high pressure and the gas cooler outlet temperature was revealed, which suggests the use of a simple controller with only one parameter for the transcritical $CO_2$ cycle.

이젝터를 적용한 이산화탄소 냉동사이클의 내부열교환기 길이에 따른 성능 변화 (Performance Variation with Length of Internal Heat Exchanger in CO2 Cooling Cycle Using an Ejector)

  • 강변;조홍현
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.147-154
    • /
    • 2012
  • Recently, many researchers have studied the performance of the transcritical $CO_2$ refrigeration cycle in order to improve the system efficiency. In this study, the length of IHX in the $CO_2$ ejector cycle was varied so as to evaluate the performance improvement. As a result, compressor work and cooling capacity was increased by 3% and 5% as the length of internal heat exchanger was changed from 3 m to 15 m. The best COP was appeared at internal heat exchanger length of 12 m, and it was 3.01. Besides, the length of internal heat exchanger has a big effect to pressure lift ratio and entrainment ratio in the ejector $CO_2$ cycle and it may be changed with operating conditions and system specifications.

$CO_2$용 2단압축 1단팽창 냉동 사이클의 성능 분석 (Performance Analysis of a Carbon Dioxide(R744) Two-Stage Compression and One-Stage Expansion Refrigeration Cycle)

  • 노건상;손창효
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.70-75
    • /
    • 2009
  • In this paper, cycle performance analysis of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature in the carbon dioxide two-stage refrigeration cycle. The main results were summarized as follows : The cooling capacity of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, compressor efficiency and gas cooling pressure, but decreases with the increasing mass flowrate ratio and evaporating temperature. The compression work of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, outlet temperature of gas cooler, gas cooling pressure and evaporating temperature, but decreases with the increasing compressor efficiency and mass flowrate ratio. The COP of two-stage compression and one-stage expansion refrigeration system increases with the increasing compressor efficiency, but decreases with the increasing superheating degree, gas cooling pressure, mass flowrate ratio and evaporating temperature. Therefore, superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system have an effect on the cooling capacity, compressor work and COP of this system.

  • PDF

초임계 CO2 사이클에서 가스 인젝션이 압축기 성능에 미치는 영향 (Effects of Vapor Injection on a Compressor in a Transcritical CO2 Cycle)

  • 김우영;심재휘;이용호;김현진
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.16-21
    • /
    • 2007
  • Potential advantages of using vapor injection in a two stage rotary compressor for a $CO_2$ heat pump water heater system were addressed in this paper by numerical simulation. Vapor separated from a flash tank in the middle of the expansion process can be used for injection into the second stage suction plenum of the compressor to improve the system performance. Vapor injection increases the intermediate pressure between the two stages, thus increasing the first stage compressor work and reducing that of the second stage. As a whole, however, the compressor input power increases due to injected mass flow rate for the second stage. Computer simulation showed that increment of the cooling capacity by vapor injection exceeded that of the compressor work, thus improving the system performance. COP improvement by vapor injection was calculated to be about 5-14% for normal operating conditions. With vapor injection, a maximum COP was found when the displacement volume of the second stage becomes 90-95% of that of the first stage of the compressor.

연료전지 자동차용 전자 제어식 $CO_2$ 냉방 시스템의 성능 특성에 관한 연구 (Studies on the Performance Characteristics of an Electronically Controlled $CO_2$ Air Conditioning System for Fuel Cell Electric Vehicles)

  • 김성철;이동혁;이호성;원종필;이대웅;이원석
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.150-157
    • /
    • 2008
  • The main objective of this paper is to investigate the performance characteristics of a $CO_2$ air conditioning system for fuel cell electric vehicles (FCEV). The present air conditioning system for FCEV uses the electrically driven compressor and electrically controlled expansion valve for $CO_2$ as a working fluid. The experimental work has been done with various operating conditions, which are quite matching the actual vehicle's driving conditions such as different compressor speed and high pressure to identify the characteristics of the system. Experimental results show that the cooling capacity and coefficient of performance (COP) were up to 6.3kW and 2.5, respectively. This paper also deals with the development of optimum high pressure control algorithm for the transcritical $CO_2$ cycle to achieve the maximum COP.

$CO_2$ 단열 모세관내 유동 특성 (Flow Characteristics in an Adiabatic Capillary Tube of Carbon Dioxide)

  • 노건상;손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.537-544
    • /
    • 2008
  • In this paper, flow characteristics of an adiabatic capillary tube in a transcritical $CO_2$ have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Supercritical and subcritical thermodynamic and transport properties of $CO_2$ are calculated employing EES property code. Flow characteristics analysis of $CO_2$ adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature and inner diameter tube. The main results were summarized as follows : inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature, mass flowrate and inner diameter of $CO_2$ adiabatic capillary tube have an effect on length of an adiabatic capillary tube.

운전조건 변화가 $CO_2$ 자동차 에어컨 시스템의 냉방성능에 미치는 영향에 대한 실험적 연구 (Effects of Operating Parameters on Cooling Performance of a Transcritical $CO_2$ Mobile Air-Conditioning System)

  • 이준경
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with the research for the effects of the operating parameters that could be used for a transcritical $CO_2$ mobile air-conditioning system on the cooling performance. The experimental conditions of the performance tests for a system and components such as a gas cooler and an evaporator were suggested to compare the performance of each with the standardized test conditions. And this research presents experimental results for the performance characteristics of a $CO_2$ mobile air conditioning system with various operating conditions such as different gas cooler inlet pressures and frontal air velocities/temperatures passing through an evaporator and a gas cooler. Experimental results show that the cooling capacity was more than 5kW and coefficient of performance (COP) was more than 2.1, also. Therefore, we checked that the mobile air-conditioning system using $CO_2$ has good performance compared to that using HFC-134a.