• Title/Summary/Keyword: 초임계 $CO_2$

Search Result 295, Processing Time 0.033 seconds

Evaluation of High-Temperature Tensile Property of Diffusion Bond of Austenitic Alloys for S-CO2 Cycle Heat Exchangers (고온 S-CO2 사이클 열교환기용 스테인리스강 및 Fe-Cr-Ni 합금 확산 접합부의 고온 인장 특성평가)

  • Hong, Sunghoon;Sah, Injin;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1421-1426
    • /
    • 2014
  • To improve the inherent safety of the sodium-cooled fast reactor (SFR), the supercritical $CO_2$ ($S-CO_2$) Brayton cycle is being considered as an alternative power conversion system to steam the Rankine cycle. In the $S-CO_2$ system, a PCHE (printed circuit heat exchanger) is being considered. In this type of heat exchangers, diffusion bonding is used for joining the thin plates. In this study, the diffusion bonding characteristics of various austenitic alloys were evaluated. The tensile properties were measured at temperatures starting from the room temperature up to $650^{\circ}C$. For the 316H and 347H types of stainless steel, the tensile ductility was well maintained up to $550^{\circ}C$. However, the Incoloy 800HT showed lower strength and ductility at all temperatures. The microstructure near the bond line was examined to understand the reason for the loss of ductility at high temperatures.

High-pressure Phase Behavior of 1-propanol / Carbon Dioxide Binary System (1-Propanol / CO2 이성분계의 고압 상거동)

  • Han, Chang-Nam;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.763-767
    • /
    • 2010
  • High-pressure phase behavior for the binary mixture of 1-propanol with supercritical $CO_2$ has been measured by means of a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The equilibrium loci of the pressure - composition and pressure - temperature were obtained for the binary mixture of 1-propanol + $CO_2$ system at 305.15 K, 313.15 K, 323.15 K and 333.15 K, and from 2 MPa to 11 MPa. The critical temperature of the mixture increased with the temperature. The pressure-composition line for the binary mixture of $CO_2$-1-propanol system showed a typical type-II phase behavior. The experimental P-x envelopes were correlated by using the Peng-Robinson equation of state in a satisfactory manner to obtain the parameters with $k_{ij}=0.116$ and ${\eta}_{ij}=-0.065$.

Biodiesel Production by Transesterification of Crude Soybean Oil with Methanol (대두원유의 전이에스테르화 반응에 의한 바이오디젤 제조)

  • Kim, Deog-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.533-536
    • /
    • 2006
  • 재생 가능한 자원인 동 식물성 기름으로부터 제조되는 수소용 연료 바이오디젤은 낮은 대기오염 배출과 $CO_2$ Neutral 특성으로 환경 친화적인 연료로 인정을 받으며 전 세계적으로 그 생산량이 급격히 증가하고 있다. 바이오디젤 생산 기술에는 직접이용법, 마이크로 에멀젼법, 열분해법, 에스테르화법, 초임계 메탄올 이용 생산법 등이 있으며 현재의 대부분의 상용 공정은 전이에스테르화법에 근거하고 있다. 이 공정은 크게 나누어 원료 유지 물질의 전처리 단계, 촉매를 사용하여 알콜과 에스테르화시키는 단계, 그리고 생성된 바이오디젤/글리세린의 분리와 정제 단계로 이루어지며 각 단계의 세부기술은 바이오디젤 생산비에 직접적인 영향을 미친다. 본 연구에서는 대두 원유의 전처리 반응, 전처리된 대두원유의 전이에스테르화 반응, 그리고 분리 및 정제 공정의 운전 변수들의 영향에 대한 연구결과와 본 연구를 통해 확립된 생산 공정으로 생산한 연료 grade의 바이오디젤 연료 물성 평가하였다.

  • PDF

Production of Gemcitabine-Loaded Poly (L-lactic acid) Microparticles Using Supercritical Carbon Dioxide: Effect of Process Parameters (초임계 이산화탄소를 이용한 Gemcitabine 함유 PLLA 미립자 제조: 공정 변수의 영향)

  • Joo, Hyun-Jae;Jung, In-Il;Lim, Gio-Bin;Ryu, Jong-Hoon
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • In this study, poly (L-lactic acid) (PLLA) microparticles containing gemcitabine hydrochloride were prepared by a supercritical fluid process, called aerosol solvent extraction system (ASES), utilizing supercritical carbon dioxide as antisolvent. The influence of process parameters such as temperature, pressure, $CO_2$ and solution flow rate, solution concentration, and feed ratio of drug to polymer on the morphology and characteristics of the microparticles was studied in detail. The gemcitabine-loaded microparticles exhibited a spherical shape with a smooth surface. The entrapment efficiency of gemcitabine increased with increasing temperature, solution concentration and $CO_2$ flow rate and with decreasing drug/polymer feed ratio. The maximum drug loading obtained from the ASES process was found to be about 11%. The ASES-processed PLLA microparticles containing gemcitabine showed a relatively high initial burst due to the presence of surface pores on the microparticles and the poor affinity between drug and polymer.

Bearing and Rotordynamic Performance Analysis of a 250 kW Reduction Gear System (250 kW급 초임계 CO2 발전용 감속기의 유체 윤활 베어링 및 회전체 동역학 특성 해석)

  • Lee, Donghyun;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.107-112
    • /
    • 2016
  • This paper presents a rotordynamic analysis of the reduction gear system applied to the 250 kW super critical CO2 cycle. The reduction gear system consists of an input shaft, intermediate shaft, and output shaft. Because of the high rotating speed of the input shaft, we install tilting pad bearings, rolloer bearings support the intermediate and output shafts. To predict the tilting pad bearing performance, we calculate the applied loads to the tilting pad bearings by considering the reaction forces from the gear. In the rotordynamic analysis, gear mesh stiffness results in a coupling effect between the lateral and torsional vibrations. The predicted Campbell diagram shows that there is not a critical speed lower than the rated speed of 30,000 rpm of the input shaft. The predicted modes on the critical speeds are the combined bending modes of the intermediate and output shaft, and the lateral vibrations dominate when compared to the torsional vibrations. The damped natural frequency does not strongly depend on the rotating speeds, owing to the relatively low rotating speed of the intermediate and output shaft and constant stiffness of the roller bearing. In addition, the logarithmic decrements of all the modes are positive; therefore all modes are stable.

A Study of Physical and Thermal Properties of Dyed PET Fiber using Supercritical Fluid Dyeing Technology (초임계 유체 염색기술 적용 PET 섬유의 물리적 및 열적 특성 분석)

  • Kim, Sam Soo;Oh, Jiyeon;Park, Changpyo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.147-154
    • /
    • 2019
  • In this study, poly(ethylene terephthalate)(PET) fibres dyed with Disperse Red 167 using supercritical $CO_2$ technology. The purpose of this study was to investigate relationship between PET fibers and supercritical $CO_2$ during dyeing. The effects of temperature, pressure, dyeing time and mass ratio between the dye and PET in the dyeing chamber were considered. Thermal and mechanical properties of the fibers were investigated. Tensile strength of dyed PET fibers decreased at higher temperature and pressure conditions. DSC and DMA results indicated that the Tg and Tm values decreased significantly when compared to the pure PET fibers. However, uniformly dyed PET fibers were typically observed.

Heat Transfer and Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (초임계 $CO_2$의 헬리컬 코일관 내 열선단과 압력강하 특성)

  • Yu, Tae-Guen;Kim, Dae-Hui;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.353-358
    • /
    • 2005
  • The heat transfer and pressure drop of supercritical $CO_2$ cooled in a helically coiled tube was investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The experimental apparatus of the refrigerant loop consist of receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a helically coiled tube in tube counter flow heat exchanger with $CO_2$ flowed inside the inner tube and coolant( water) flowed along the outside annular passage, It was made of it copper tube with the inner diameter of 4.55[mm]. the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were $200^{\sim}600$ [kg/m2s] and the inlet pressure of gas cooler varied from 7.5 [MPa] to 10.0 [MPa]. The main results are summarized as follows : The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Phase behavior of CO2 + H2O + 2,2,3,3,3-pentafluoro-1-propanol mixture (이산화탄소+물+2,2,3,3,3-pentafluoro-1-propanol 혼합물의 상거동)

  • Shin, Hun Yong
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.275-279
    • /
    • 2018
  • In this study, microemulsion formation of water and carbon dioxide was investigated by using surfactant as one of the methods for increasing the mutual solubility between water and carbon dioxide. The surfactant 2,2,3,3,3-Pentafluoro-1-propanol was added to form a microemulsion of water and carbon dioxide. The cloud point change and trend of micro emulsion were investigated by adding water and a certain amount of surfactant, 2,2,3,3,3-Pentafluoro-1-propanol to supercritical carbon dioxide. In the case of surfactant + carbon dioxide system, it was 8.35 ~ 12.69 MPa in temperature range of 313.2 ~ 353.2 K. In the case of water + surfactant + carbon dioxide system, the temperature ranged from 318.2 ~ 338.2 K to pressure range 7.83 ~ 17.28 MPa.

Gas cooling heat transfer coefficient for $CO_2$-PEC9 mixture under supercritical condition (초임계조건에서 $CO_2$-PEC9 혼합물의 물성예측을 통한 냉각 열전달특성 연구)

  • Yun, Rin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.821-826
    • /
    • 2009
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems. Oils are always required in a vapor-compression cycle, and thus actual working fluid in the system is $CO_2$-oil mixtures even though the oil concentrations are low at the heat exchangers and the expansion device. The cooling heat transfer coefficients for $CO_2$-oil mixtures under supercritical condition are required to designing of the gas cooler in the $CO_2$ refrigeration system properly. In the present study, the gas cooling heat transfer coefficients for $CO_2$-PEC9 was estimated by using the Gnileinski correlation, and the Kim and Ghajar model through the previous prediction models for the thermo-physical properties of $CO_2$-oil mixture. The Gnileinski correlation was used when the oil wt.% in the mixture is less than 1.0, and for the higher oil concentration the Kim and Ghajar model was applied. The estimated results agree with the experimental results conducted by the Dang et al.

  • PDF